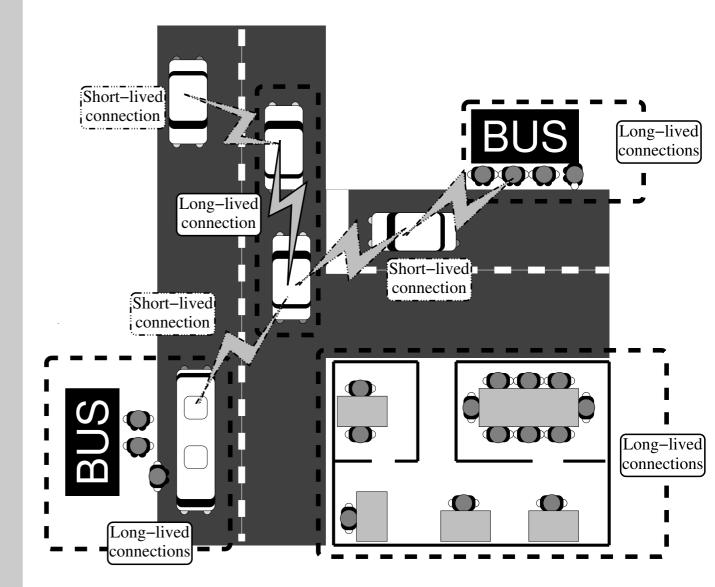
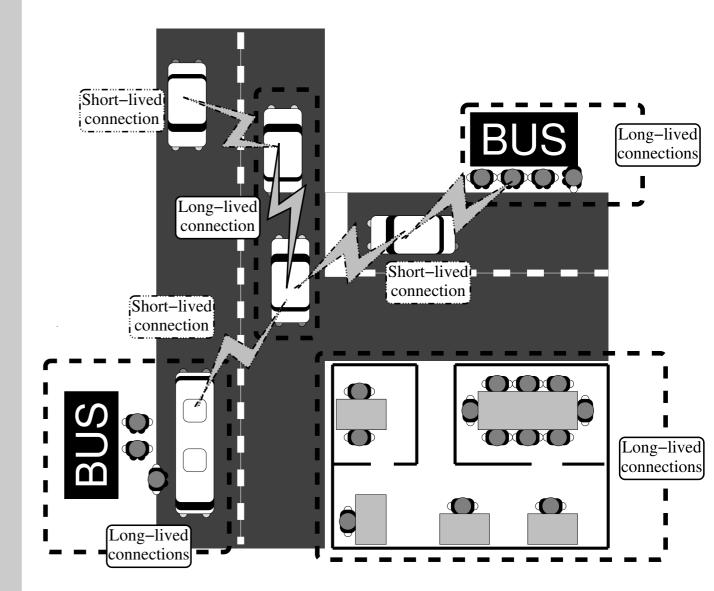
ERCIM SNA WG Algorithmic Aspects of Social Network Analysis Guillaume-Jean Herbiet March, 11th 2010, UCD, Dublin

Distributed community detection over dynamic networks using neighborhood similarity

- In wireless mobile ad hoc networks network heterogeneity exists
 - Propagation/environment
 - Human (i.e. social) mobility patterns
 - Mutual or group shared interest



- In wireless mobile ad hoc networks network heterogeneity exists
 - Propagation/environment
 - Human (i.e. social) mobility patterns
 - Mutual or group shared interest
- Community structures are helpful
 - Subgraphs of interactive and high-end communications
 - Use weak ties for delay-tolerant global information

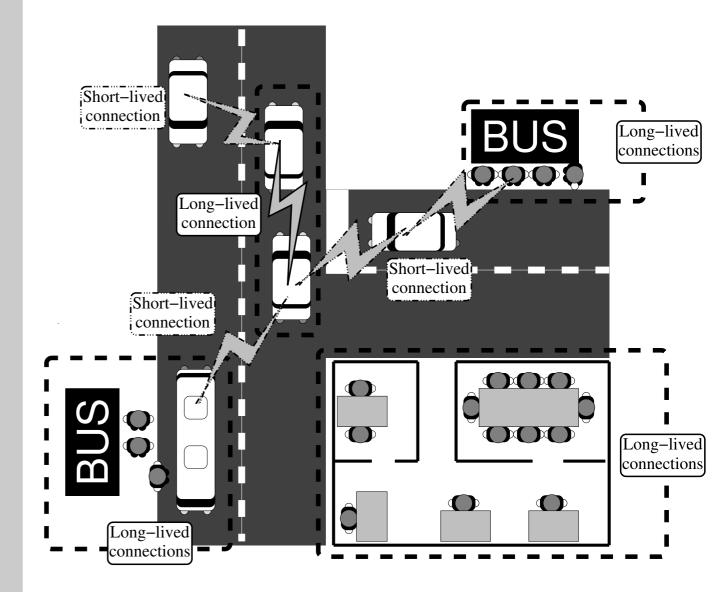


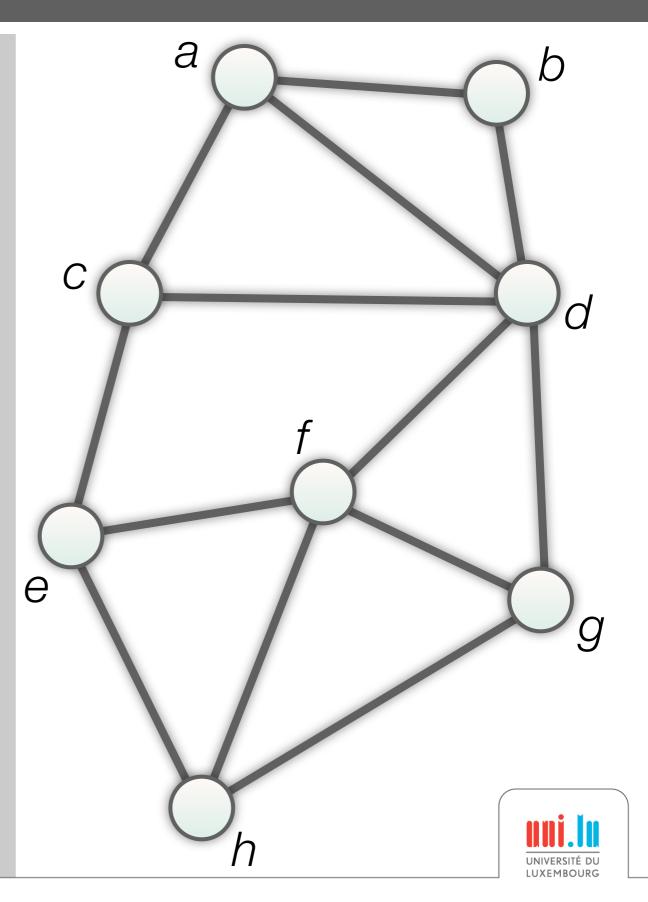
In wireless mobile ad hoc networks network heterogeneity exists

- Propagation/environment
- Human (i.e. social) mobility patterns
- Mutual or group shared interest
- Community structures are helpful
 - Subgraphs of interactive and high-end communications
 - Use weak ties for delay-tolerant global information

Challenges:

- Dynamic network
- Distributed approach

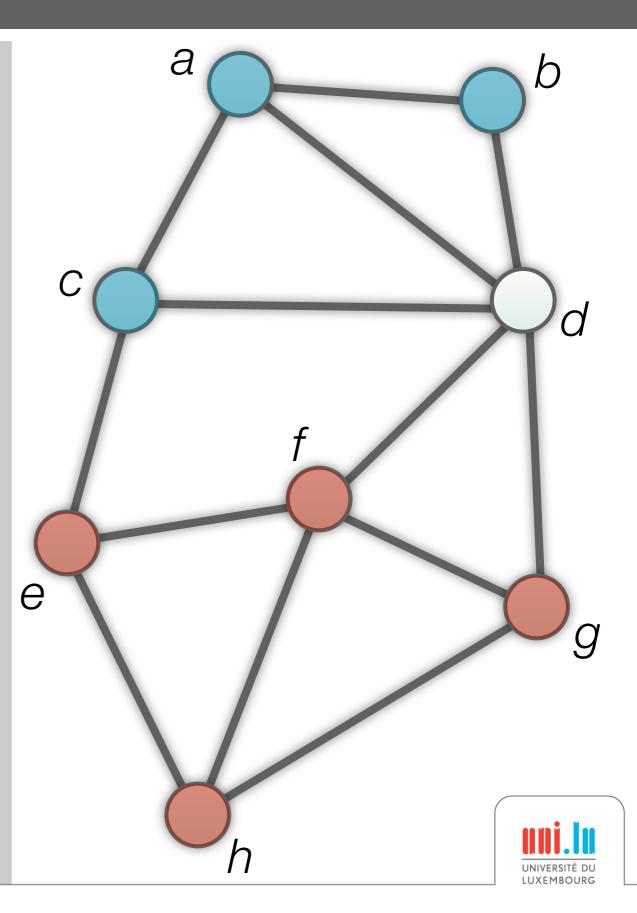




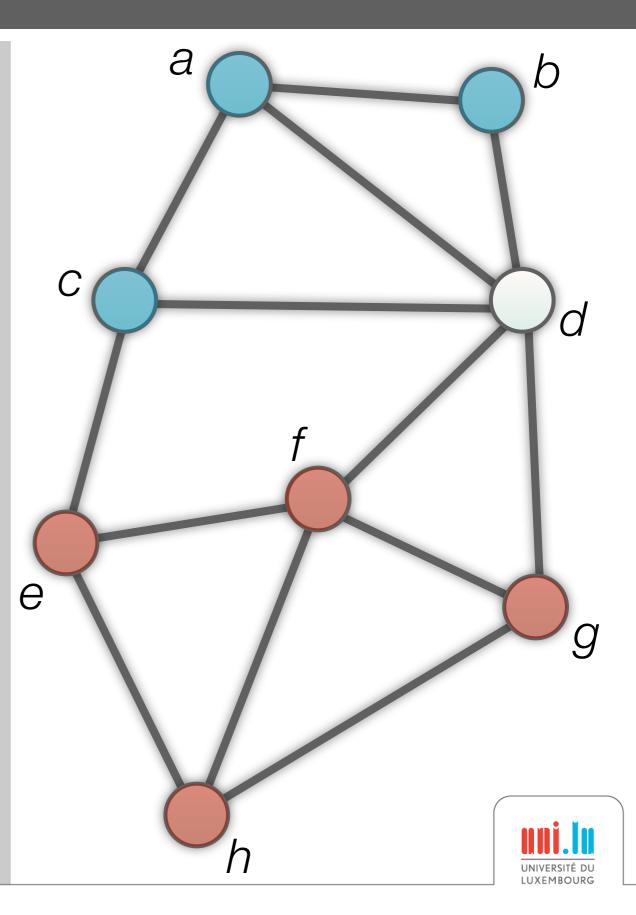
^[1] U.N. Raghavan et al., Near Linear Time Algorithm to Detect Community Structures in Large-scale Networks, 2007
 ^[2] I.X.Y. Leung and P. Hui and P. Lio and J. Crowcroft, Towards Real-Time Community Detection in Large Networks), 2009

☐ FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION

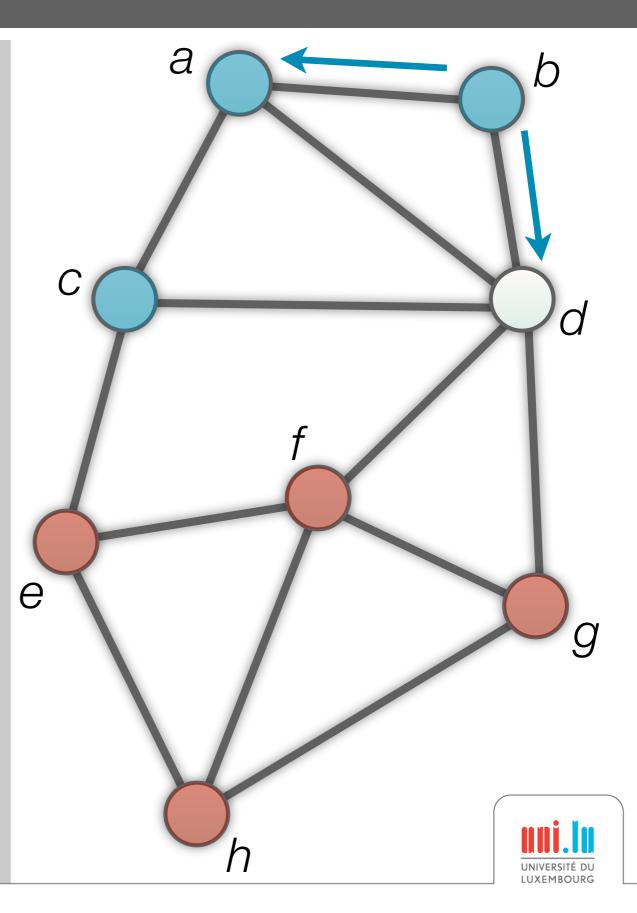
Alternative algorithms^{[1][2]} use epidemic label propagation



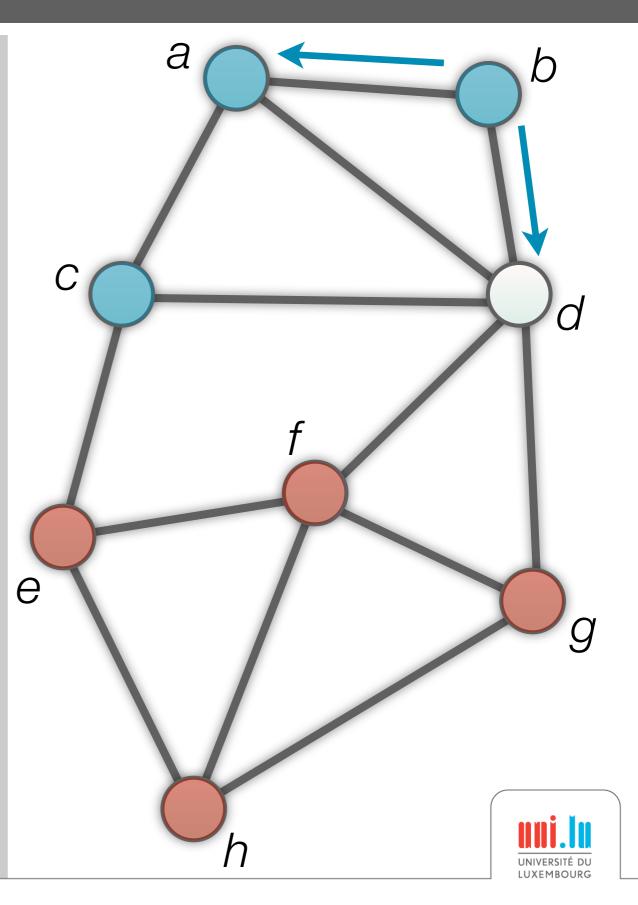
- Alternative algorithms^{[1][2]} use epidemic label propagation
 - Nodes broadcast their labels to their neighbors



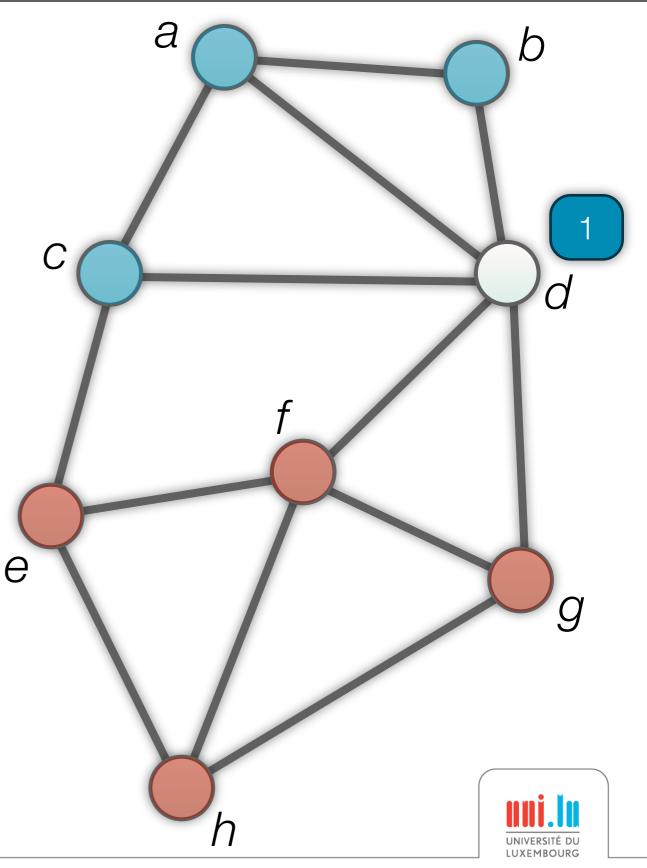
- Alternative algorithms^{[1][2]} use epidemic label propagation
 - Nodes broadcast their labels to their neighbors



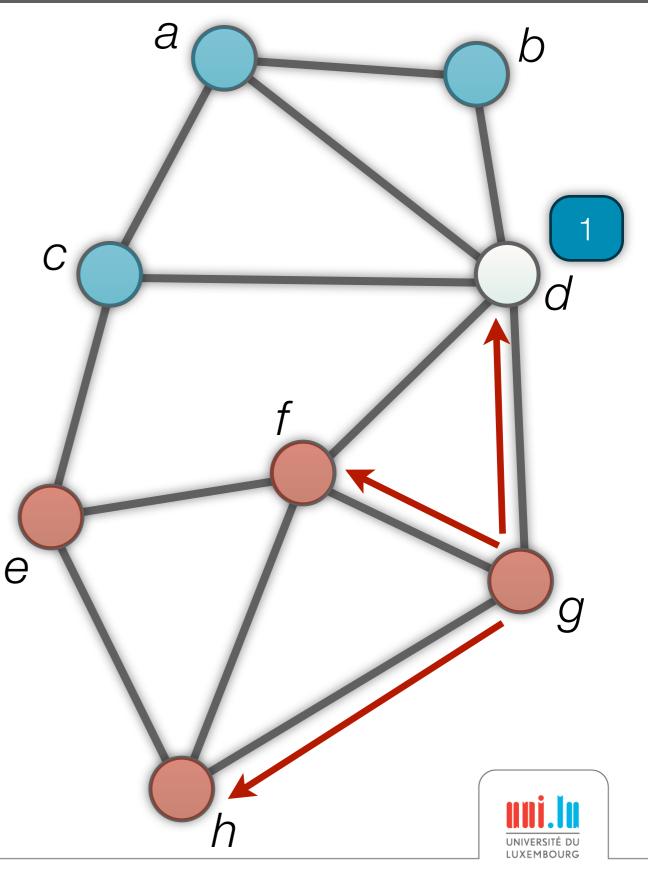
- Alternative algorithms^{[1][2]} use epidemic label propagation
 - Nodes broadcast their labels to their neighbors
 - Received labels are counted



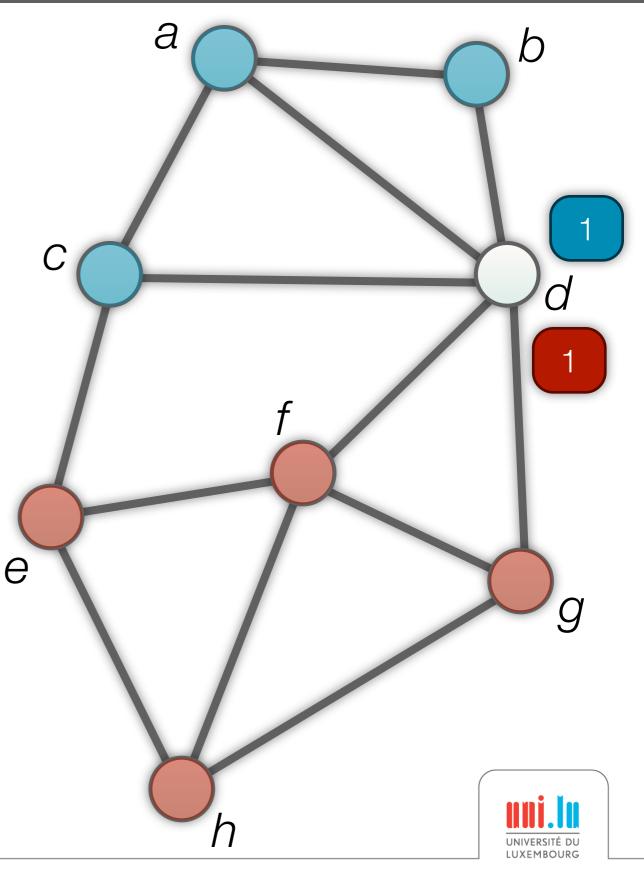
- Alternative algorithms^{[1][2]} use epidemic label propagation
 - Nodes broadcast their labels to their neighbors
 - Received labels are counted



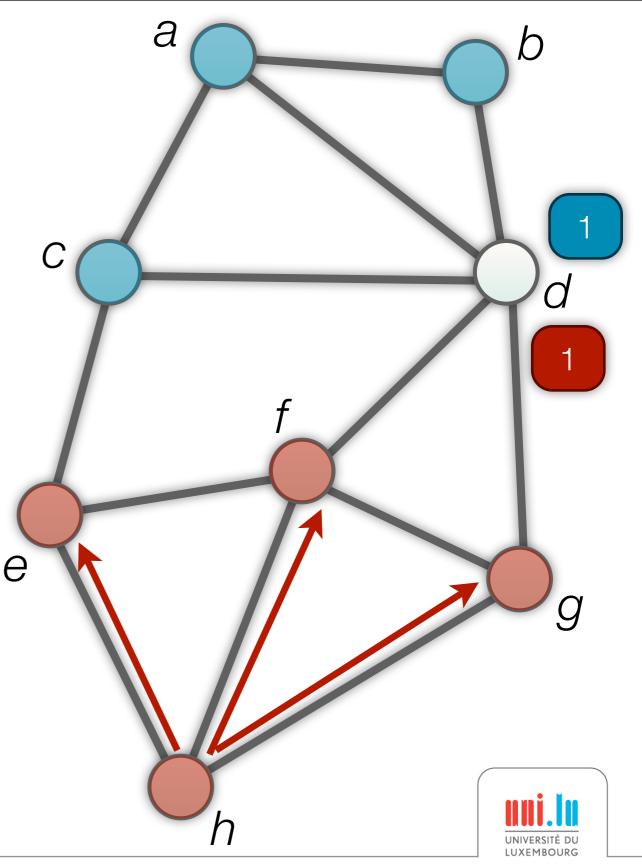
- Alternative algorithms^{[1][2]} use epidemic label propagation
 - Nodes broadcast their labels to their neighbors
 - Received labels are counted



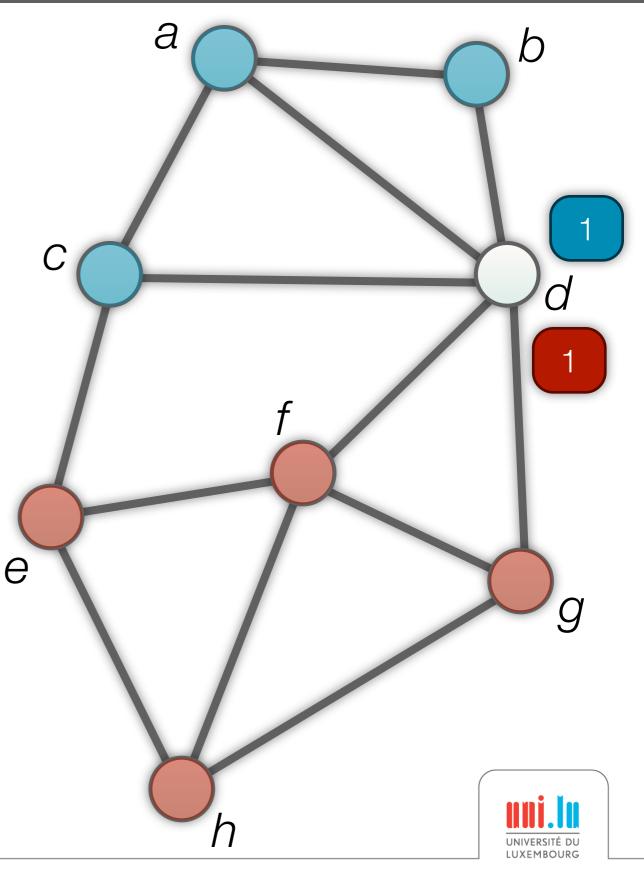
- Alternative algorithms^{[1][2]} use epidemic label propagation
 - Nodes broadcast their labels to their neighbors
 - Received labels are counted



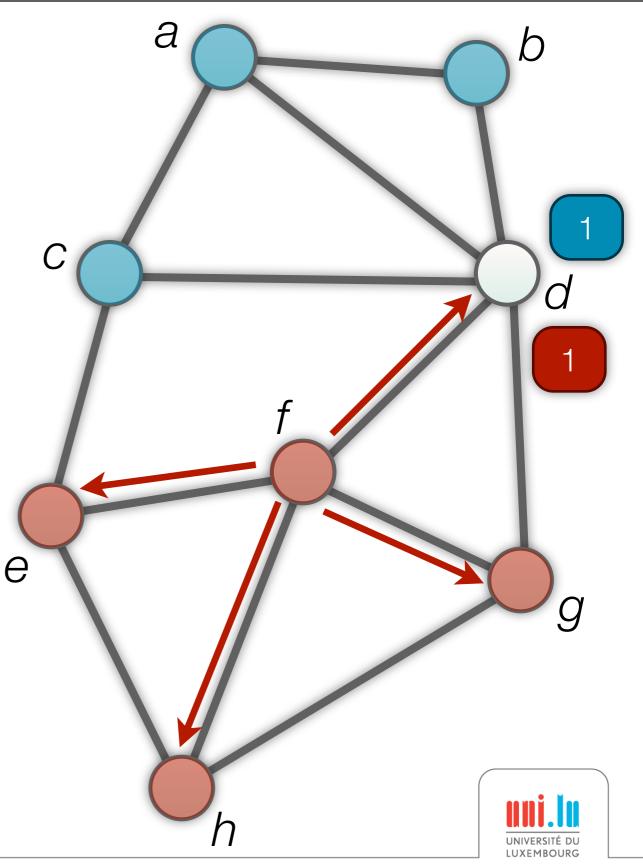
- Alternative algorithms^{[1][2]} use epidemic label propagation
 - Nodes broadcast their labels to their neighbors
 - Received labels are counted



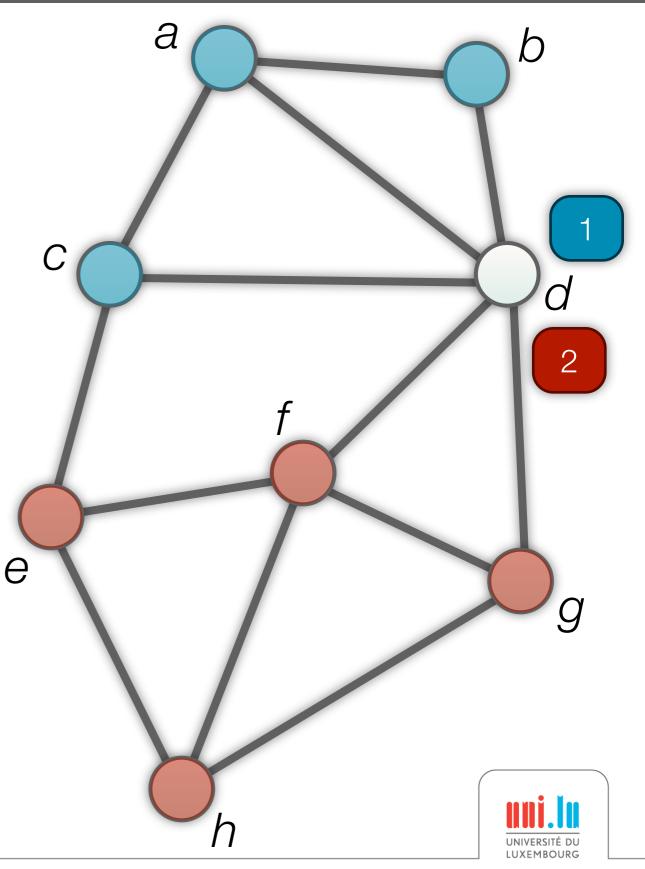
- Alternative algorithms^{[1][2]} use epidemic label propagation
 - Nodes broadcast their labels to their neighbors
 - Received labels are counted



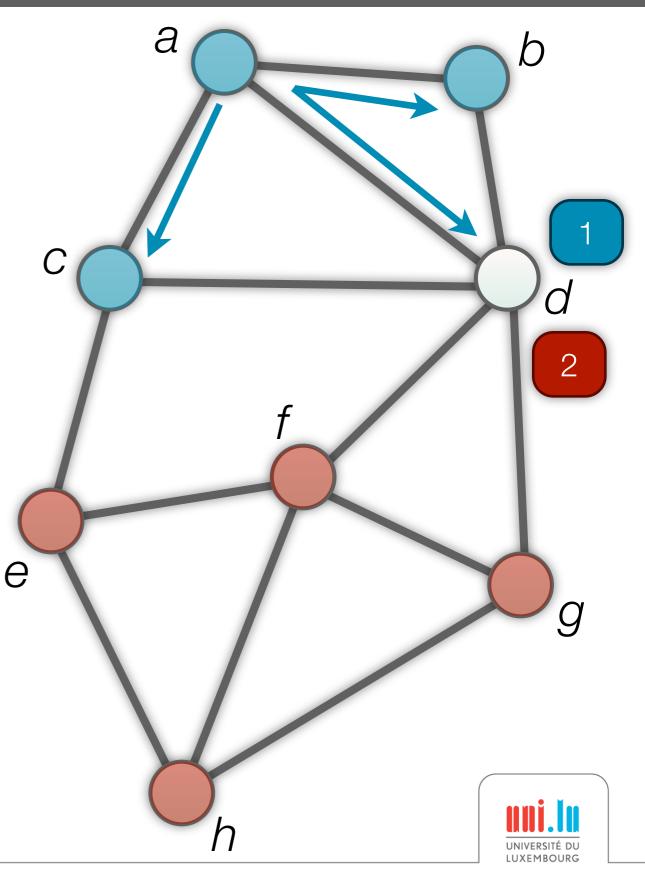
- Alternative algorithms^{[1][2]} use epidemic label propagation
 - Nodes broadcast their labels to their neighbors
 - Received labels are counted



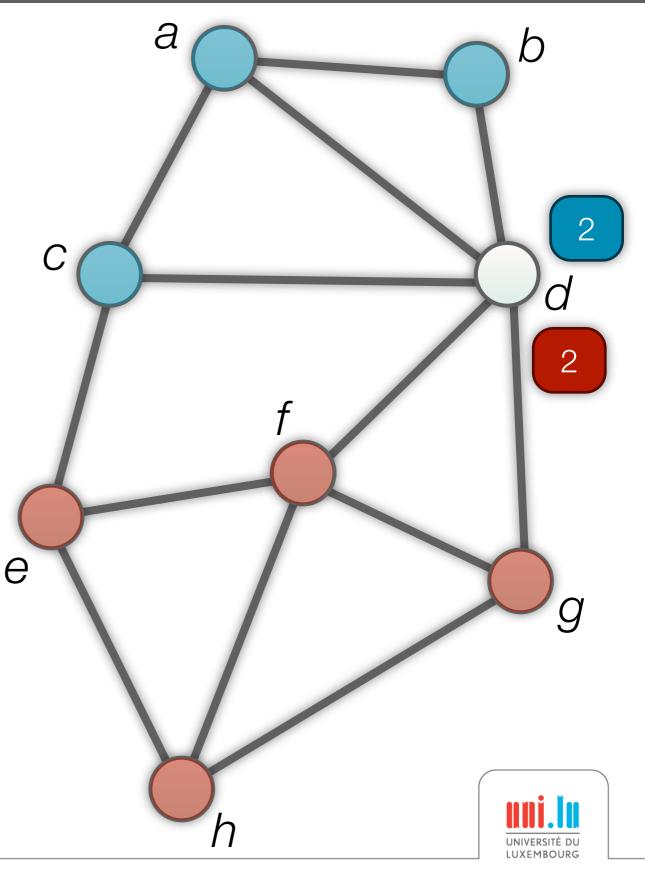
- Alternative algorithms^{[1][2]} use epidemic label propagation
 - Nodes broadcast their labels to their neighbors
 - Received labels are counted



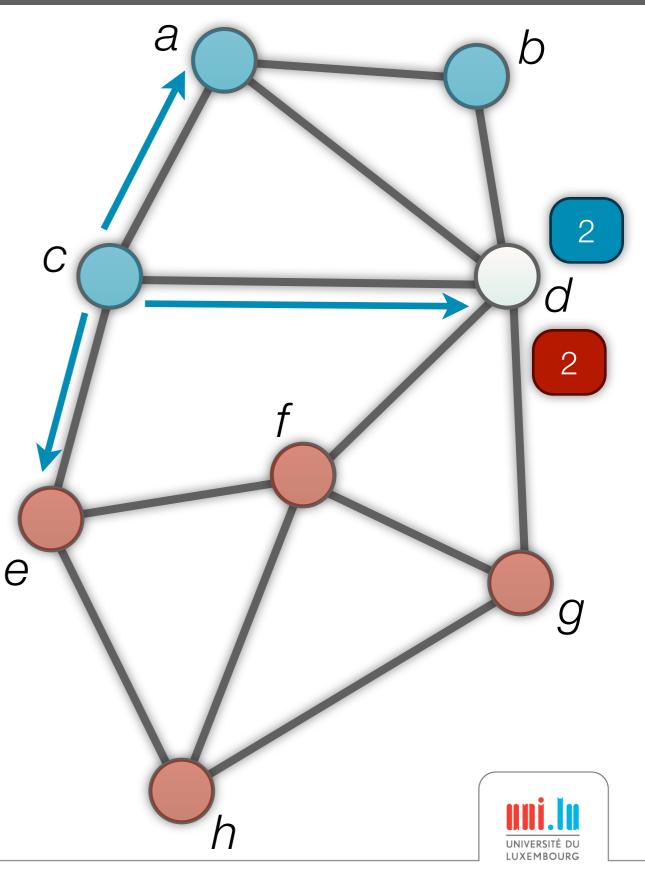
- Alternative algorithms^{[1][2]} use epidemic label propagation
 - Nodes broadcast their labels to their neighbors
 - Received labels are counted



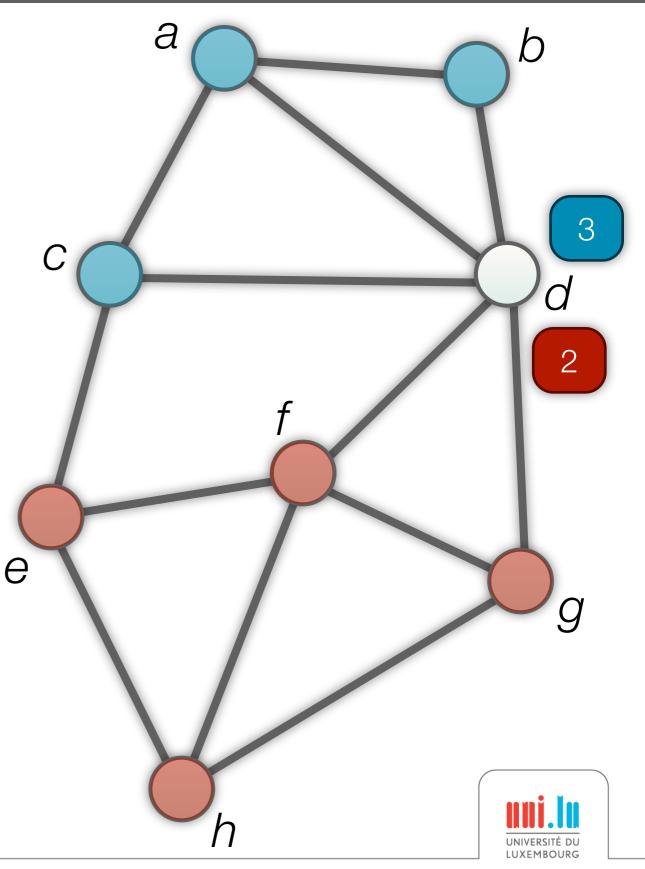
- Alternative algorithms^{[1][2]} use epidemic label propagation
 - Nodes broadcast their labels to their neighbors
 - Received labels are counted



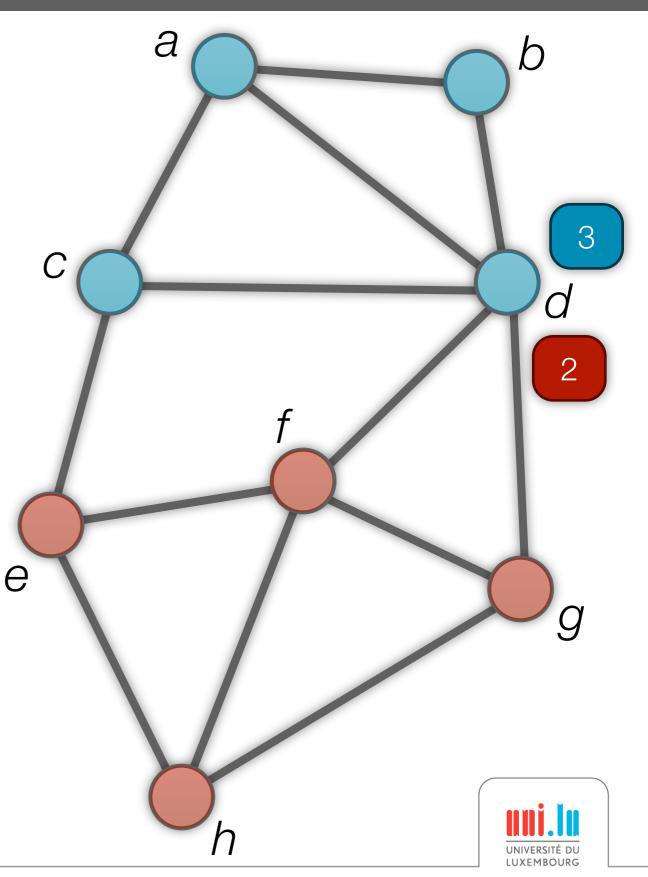
- Alternative algorithms^{[1][2]} use epidemic label propagation
 - Nodes broadcast their labels to their neighbors
 - Received labels are counted



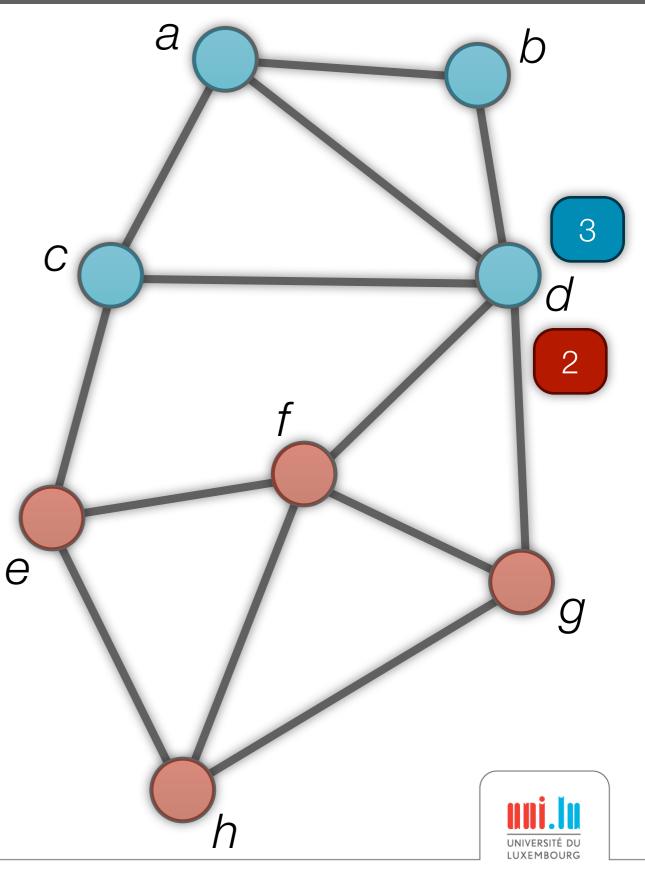
- Alternative algorithms^{[1][2]} use epidemic label propagation
 - Nodes broadcast their labels to their neighbors
 - Received labels are counted



- Alternative algorithms^{[1][2]} use epidemic label propagation
 - Nodes broadcast their labels to their neighbors
 - Received labels are counted
 - Node changes to the label with highest count



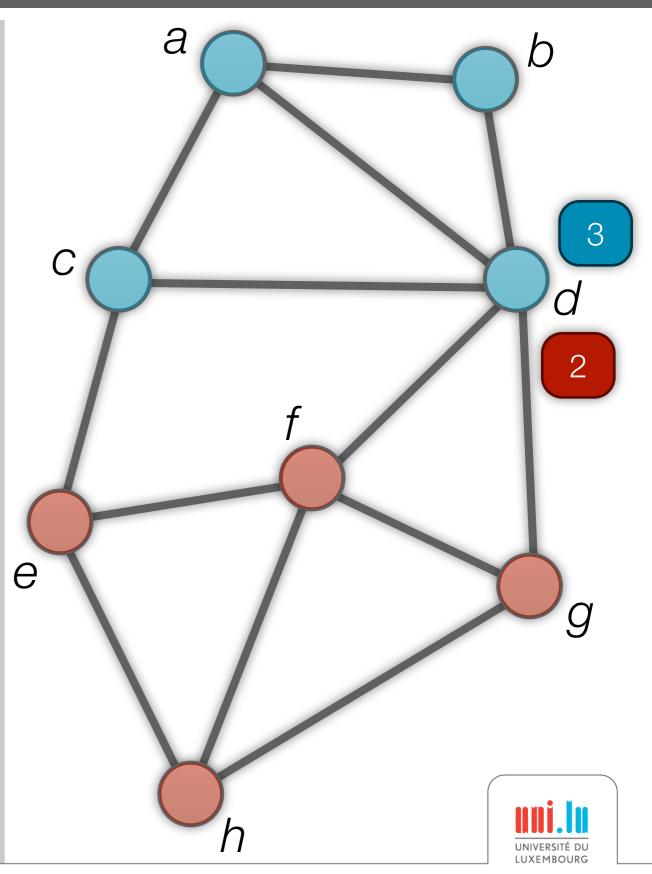
- Alternative algorithms^{[1][2]} use epidemic label propagation
 - Nodes broadcast their labels to their neighbors
 - Received labels are counted
 - Node changes to the label with highest count
- Operation is (a)synchronous



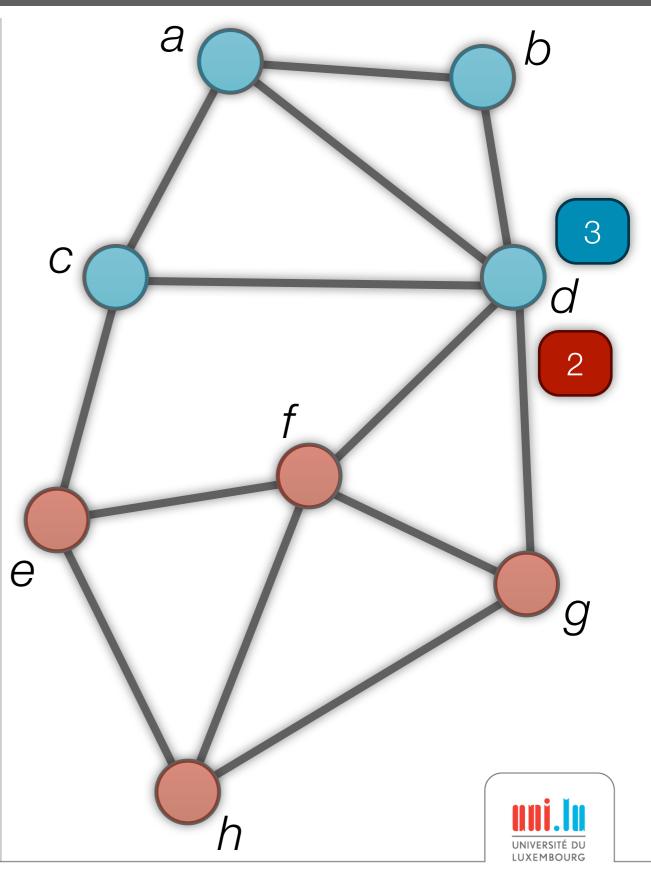
^[1] U.N. Raghavan et al., Near Linear Time Algorithm to Detect Community Structures in Large-scale Networks, 2007
 ^[2] I.X.Y. Leung and P. Hui and P. Lio and J. Crowcroft, Towards Real-Time Community Detection in Large Networks), 2009

☐ FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION

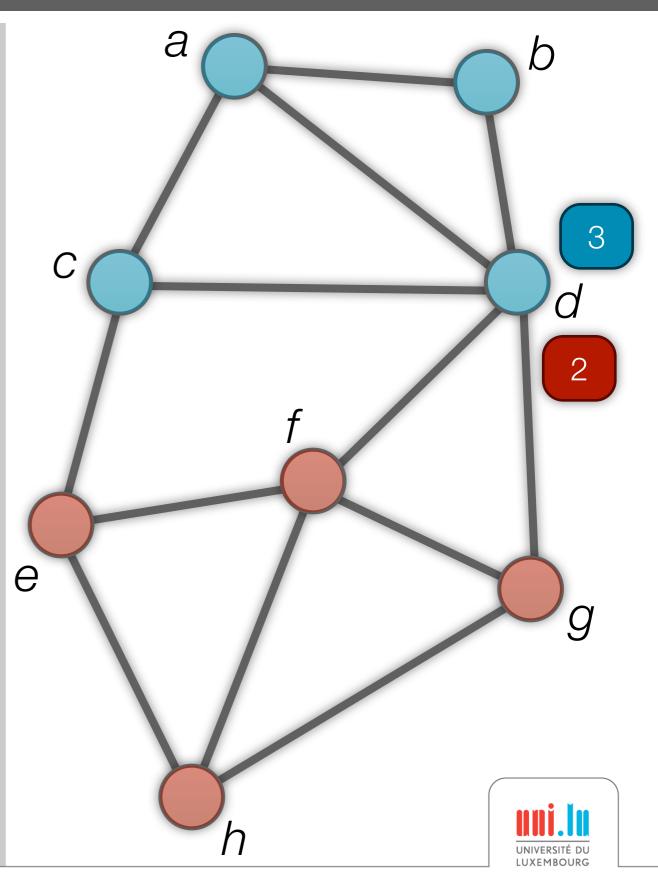
- Alternative algorithms^{[1][2]} use epidemic label propagation
 - Nodes broadcast their labels to their neighbors
 - Received labels are counted
 - Node changes to the label with highest count
- Operation is (a)synchronous
- Known issues:



- Alternative algorithms^{[1][2]} use epidemic label propagation
 - Nodes broadcast their labels to their neighbors
 - Received labels are counted
 - Node changes to the label with highest count
- Operation is (a)synchronous
- Known issues:
 - Label oscillation (synchronous)



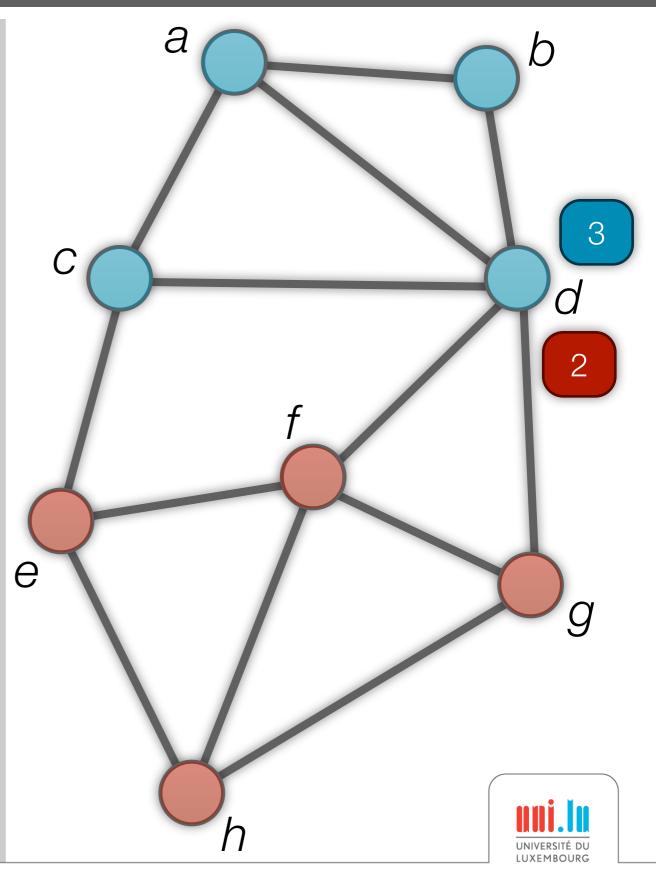
- Alternative algorithms^{[1][2]} use epidemic label propagation
 - Nodes broadcast their labels to their neighbors
 - Received labels are counted
 - Node changes to the label with highest count
- Operation is (a)synchronous
- Known issues:
 - Label oscillation (synchronous)
 - Community domination



^[1] U.N. Raghavan et al., *Near Linear Time Algorithm to Detect Community Structures in Large-scale Networks*, 2007

^[2] I.X.Y. Leung and P. Hui and P. Lio and J. Crowcroft, *Towards Real-Time Community Detection in Large Networks*), 2009

- Alternative algorithms^{[1][2]} use epidemic label propagation
 - Nodes broadcast their labels to their neighbors
 - Received labels are counted
 - Node changes to the label with highest count
- Operation is (a)synchronous
- Known issues:
 - Label oscillation (synchronous)
 - Community domination
 - Parameter dependent



^[1] U.N. Raghavan et al., *Near Linear Time Algorithm to Detect Community Structures in Large-scale Networks*, 2007

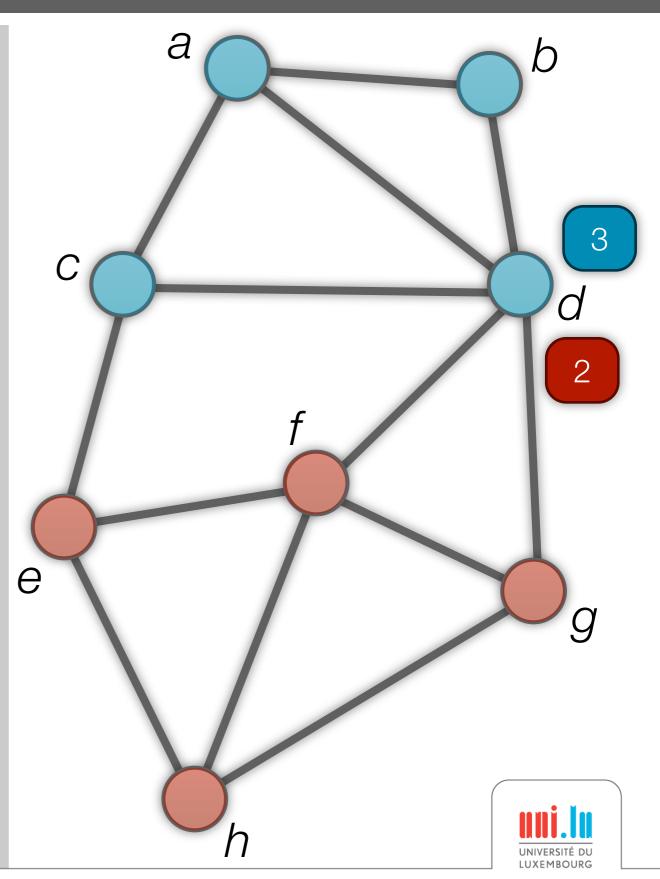
^[2] I.X.Y. Leung and P. Hui and P. Lio and J. Crowcroft, *Towards Real-Time Community Detection in Large Networks*), 2009

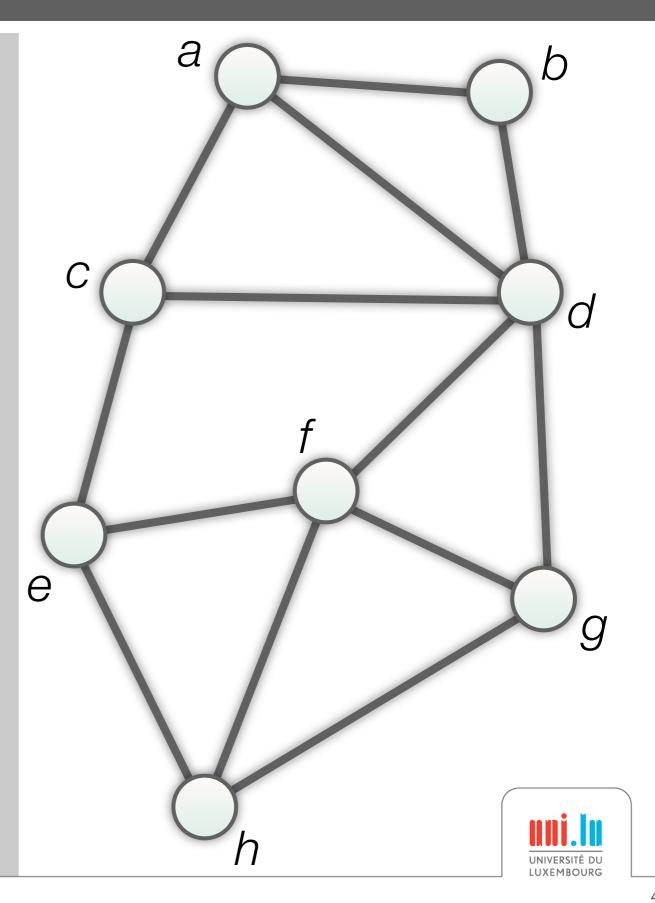
- Alternative algorithms^{[1][2]} use epidemic label propagation
 - Nodes broadcast their labels to their neighbors
 - Received labels are counted
 - Node changes to the label with highest count
- Operation is (a)synchronous
- Known issues:
 - Label oscillation (synchronous)
 - Community domination
 - Parameter dependent

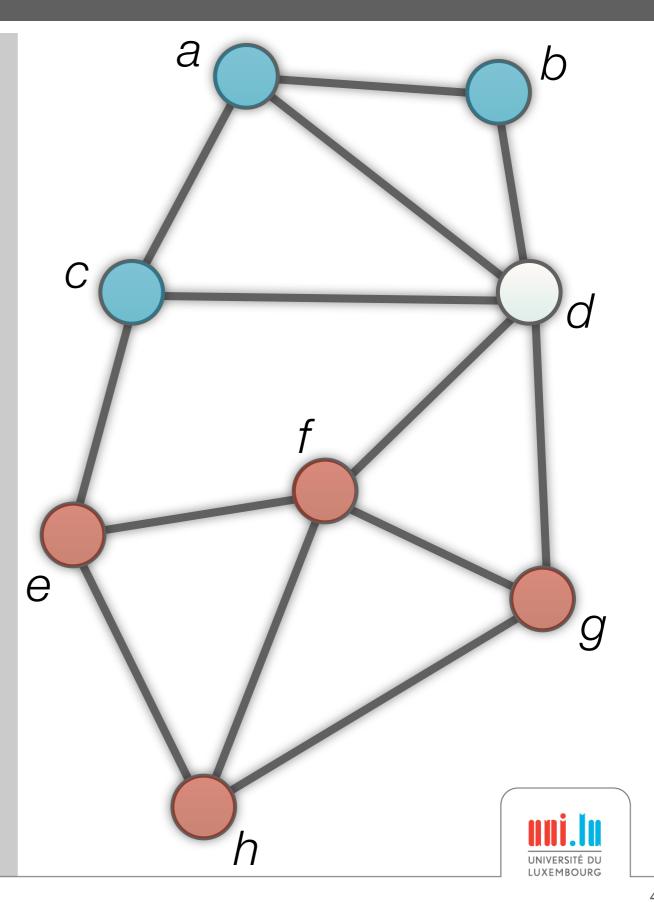
Not really focusing on dynamic networks

^[1] U.N. Raghavan et al., *Near Linear Time Algorithm to Detect Community Structures in Large-scale Networks*, 2007

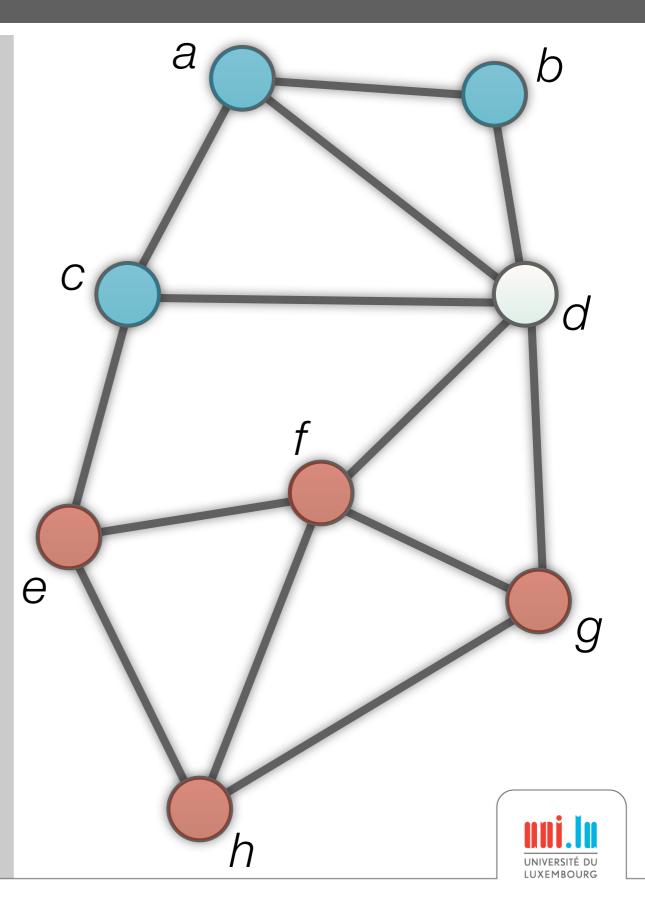
^[2] I.X.Y. Leung and P. Hui and P. Lio and J. Crowcroft, *Towards Real-Time Community Detection in Large Networks*), 2009





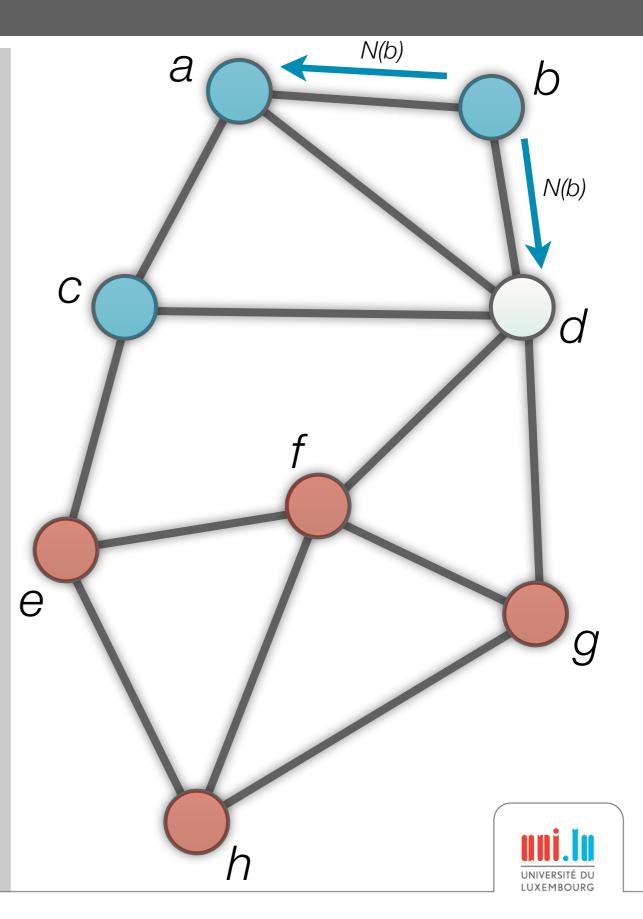


SHARC uses two-hop information



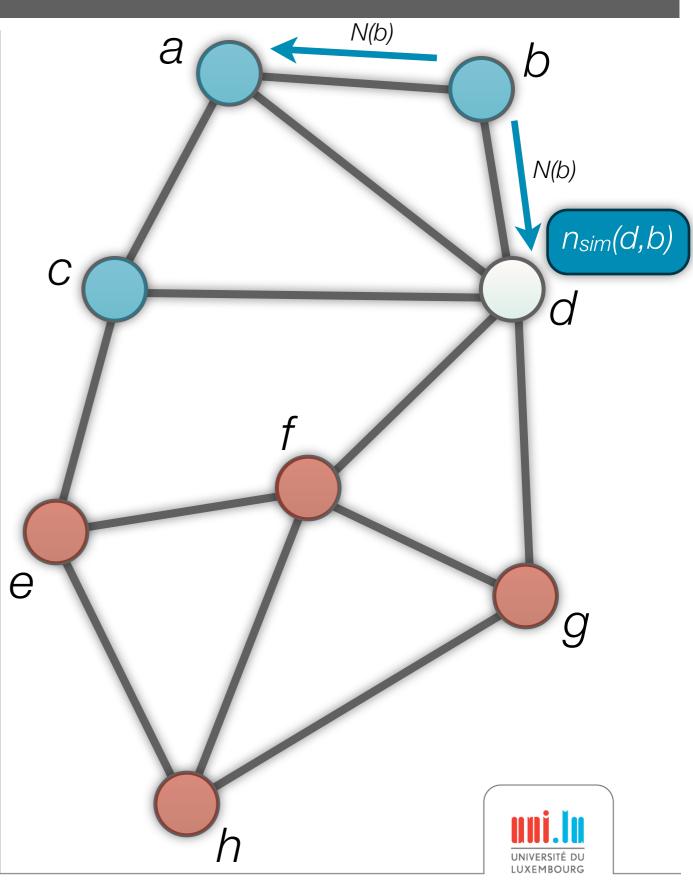
SHARC uses two-hop information

 Nodes broadcast their labels and their list of neighbors



- SHARC uses two-hop information
 - Nodes broadcast their labels and their list of neighbors
 - Used in the computation of a neighborhood similarity measure

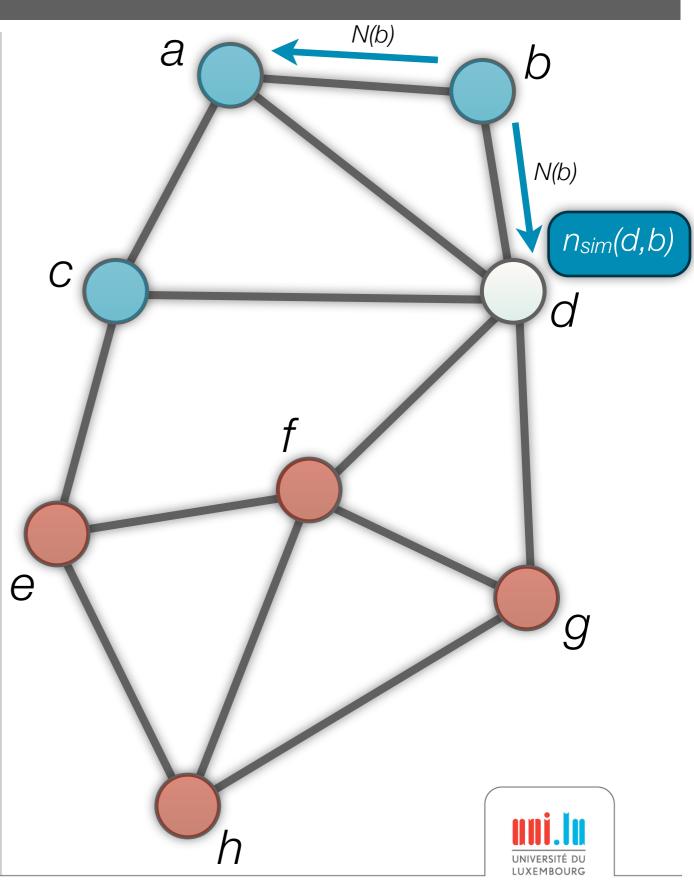
 $\forall a \in V(\mathcal{N}), b \in N(a)$ $n_{sim}(a, b) = 1 - \frac{|(N(a) \setminus N(b)) \cup (N(b) \setminus N(a))|}{|N(a)| + |N(b)|}$



- SHARC uses two-hop information
 - Nodes broadcast their labels and their list of neighbors
 - Used in the computation of a neighborhood similarity measure

 $\begin{aligned} \forall a \in V(\mathcal{N}), b \in N(a) \\ n_{sim}(a, b) &= 1 - \frac{|(N(a) \setminus N(b)) \cup (N(b) \setminus N(a))|}{|N(a)| + |N(b)|} \end{aligned}$

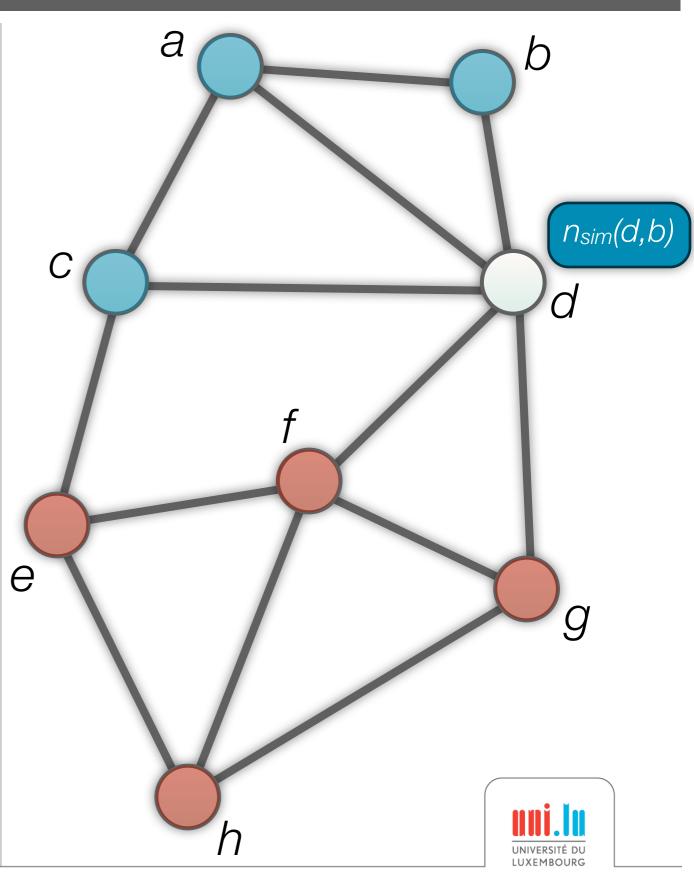
 inspired by the triadic closure^[1] property of social networks



- SHARC uses two-hop information
 - Nodes broadcast their labels and their list of neighbors
 - Used in the computation of a neighborhood similarity measure

 $\begin{aligned} \forall a \in V(\mathcal{N}), b \in N(a) \\ n_{sim}(a, b) &= 1 - \frac{|(N(a) \setminus N(b)) \cup (N(b) \setminus N(a))|}{|N(a)| + |N(b)|} \end{aligned}$

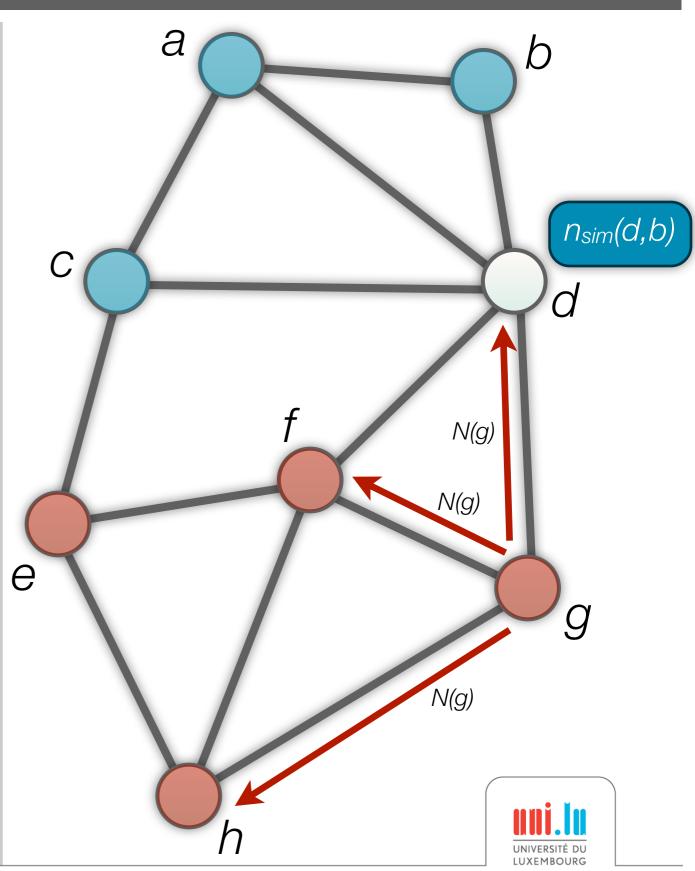
 inspired by the triadic closure^[1] property of social networks



- SHARC uses two-hop information
 - Nodes broadcast their labels and their list of neighbors
 - Used in the computation of a neighborhood similarity measure

 $\begin{aligned} \forall a \in V(\mathcal{N}), b \in N(a) \\ n_{sim}(a, b) &= 1 - \frac{|(N(a) \setminus N(b)) \cup (N(b) \setminus N(a))|}{|N(a)| + |N(b)|} \end{aligned}$

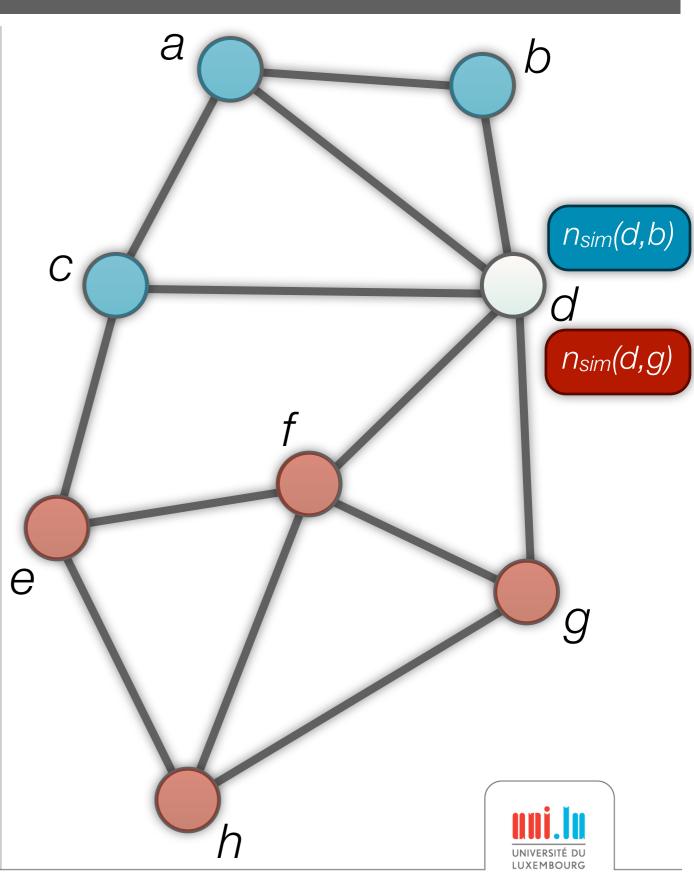
 inspired by the triadic closure^[1] property of social networks



- SHARC uses two-hop information
 - Nodes broadcast their labels and their list of neighbors
 - Used in the computation of a neighborhood similarity measure

 $\begin{aligned} \forall a \in V(\mathcal{N}), b \in N(a) \\ n_{sim}(a, b) &= 1 - \frac{|(N(a) \setminus N(b)) \cup (N(b) \setminus N(a))|}{|N(a)| + |N(b)|} \end{aligned}$

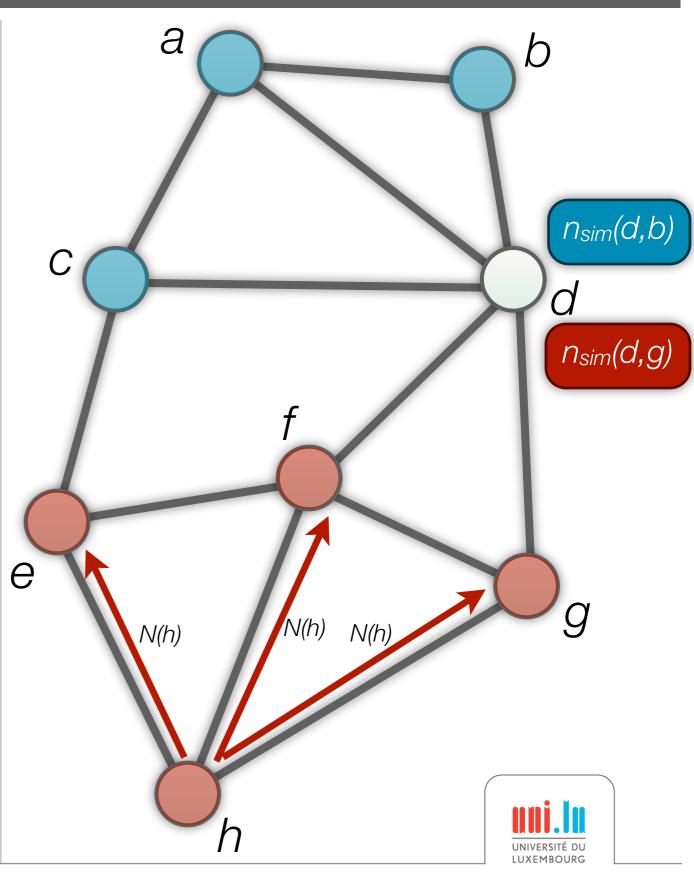
 inspired by the triadic closure^[1] property of social networks



- SHARC uses two-hop information
 - Nodes broadcast their labels and their list of neighbors
 - Used in the computation of a neighborhood similarity measure

 $\begin{aligned} \forall a \in V(\mathcal{N}), b \in N(a) \\ n_{sim}(a, b) &= 1 - \frac{|(N(a) \setminus N(b)) \cup (N(b) \setminus N(a))|}{|N(a)| + |N(b)|} \end{aligned}$

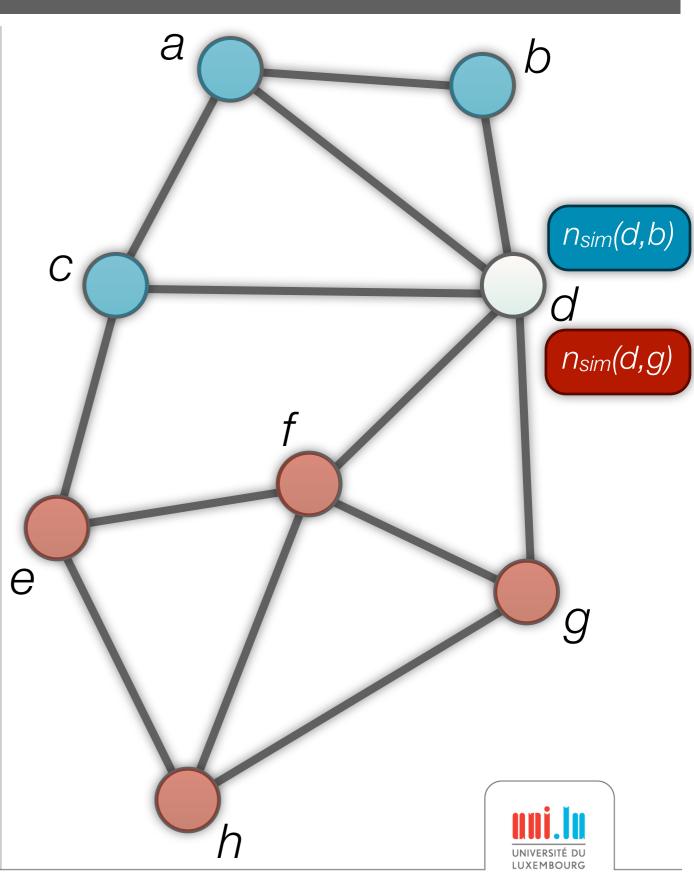
 inspired by the triadic closure^[1] property of social networks



- SHARC uses two-hop information
 - Nodes broadcast their labels and their list of neighbors
 - Used in the computation of a neighborhood similarity measure

 $\begin{aligned} \forall a \in V(\mathcal{N}), b \in N(a) \\ n_{sim}(a, b) &= 1 - \frac{|(N(a) \setminus N(b)) \cup (N(b) \setminus N(a))|}{|N(a)| + |N(b)|} \end{aligned}$

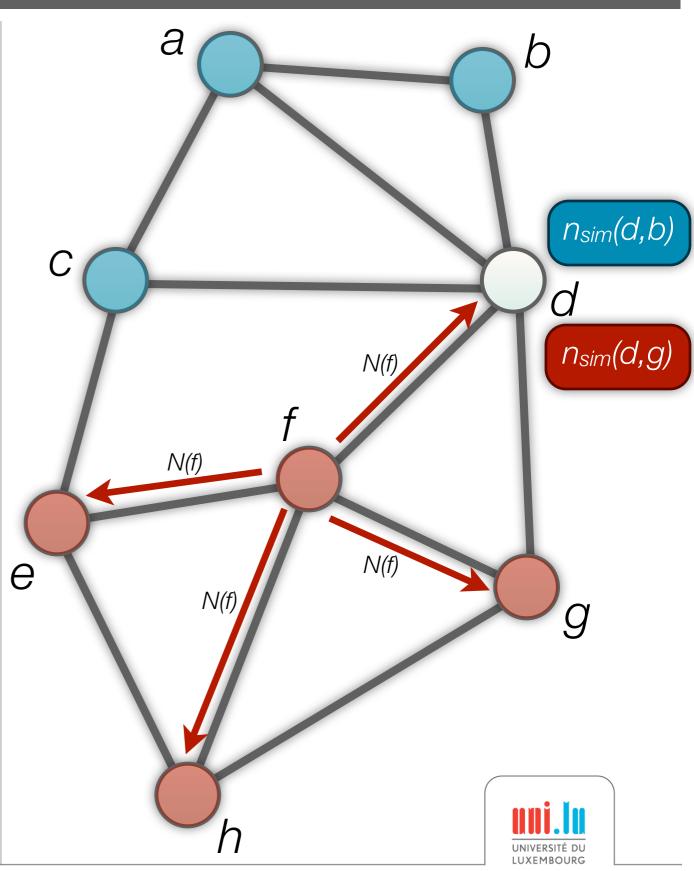
 inspired by the triadic closure^[1] property of social networks



- SHARC uses two-hop information
 - Nodes broadcast their labels and their list of neighbors
 - Used in the computation of a neighborhood similarity measure

 $\forall a \in V(\mathcal{N}), b \in N(a)$ $n_{sim}(a, b) = 1 - \frac{|(N(a) \setminus N(b)) \cup (N(b) \setminus N(a))|}{|N(a)| + |N(b)|}$

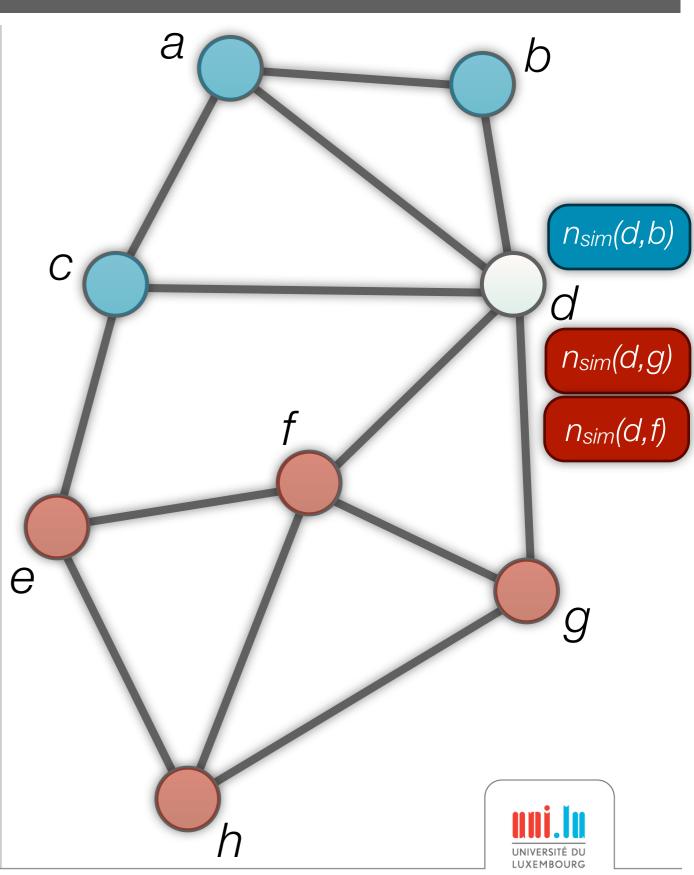
 inspired by the triadic closure^[1] property of social networks



- SHARC uses two-hop information
 - Nodes broadcast their labels and their list of neighbors
 - Used in the computation of a neighborhood similarity measure

 $\begin{aligned} \forall a \in V(\mathcal{N}), b \in N(a) \\ n_{sim}(a, b) &= 1 - \frac{|(N(a) \setminus N(b)) \cup (N(b) \setminus N(a))|}{|N(a)| + |N(b)|} \end{aligned}$

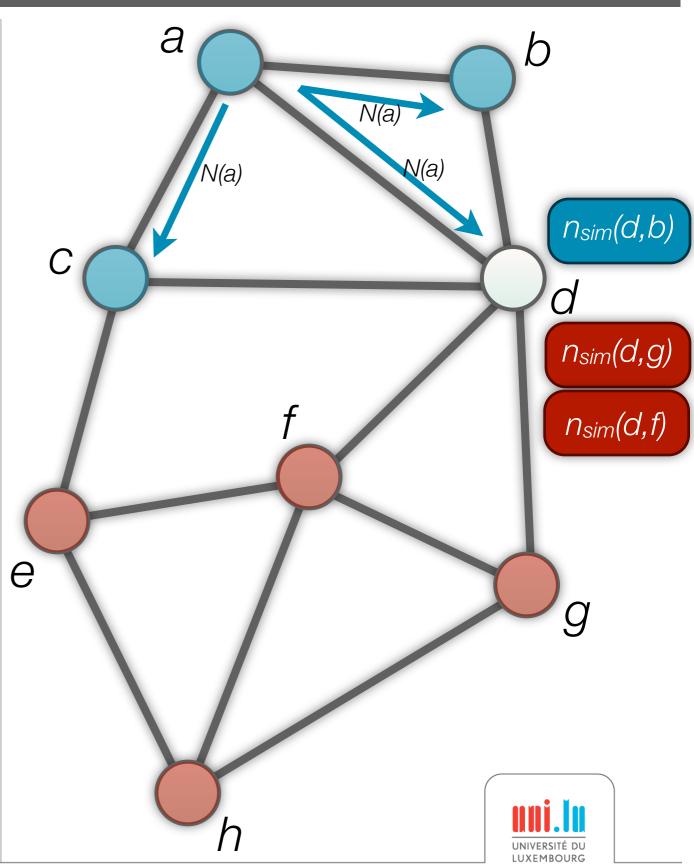
 inspired by the triadic closure^[1] property of social networks



- SHARC uses two-hop information
 - Nodes broadcast their labels and their list of neighbors
 - Used in the computation of a neighborhood similarity measure

 $\forall a \in V(\mathcal{N}), b \in N(a)$ $n_{sim}(a, b) = 1 - \frac{|(N(a) \setminus N(b)) \cup (N(b) \setminus N(a))|}{|N(a)| + |N(b)|}$

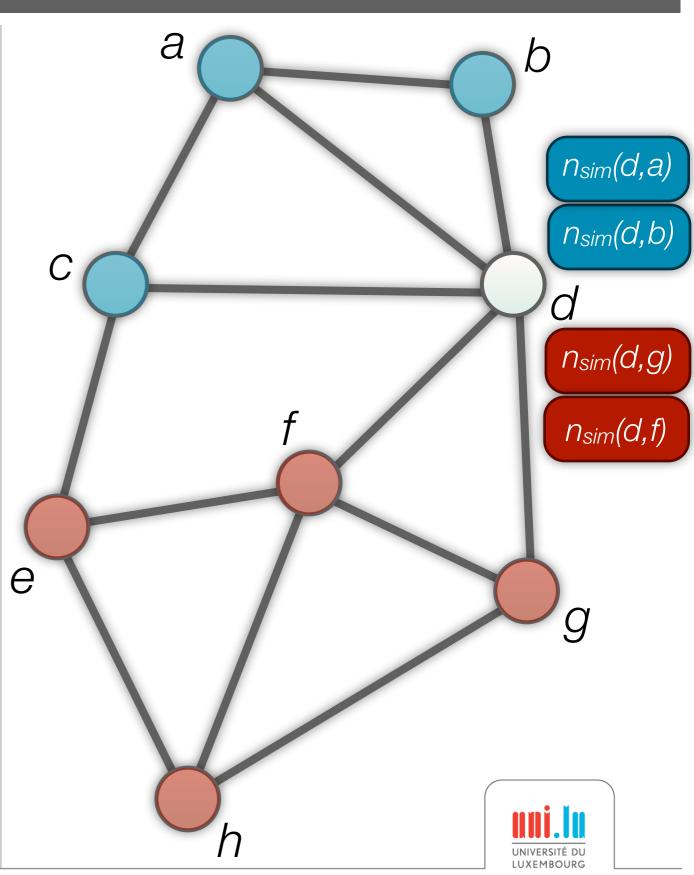
 inspired by the triadic closure^[1] property of social networks



- SHARC uses two-hop information
 - Nodes broadcast their labels and their list of neighbors
 - Used in the computation of a neighborhood similarity measure

 $\forall a \in V(\mathcal{N}), b \in N(a)$ $n_{sim}(a, b) = 1 - \frac{|(N(a) \setminus N(b)) \cup (N(b) \setminus N(a))|}{|N(a)| + |N(b)|}$

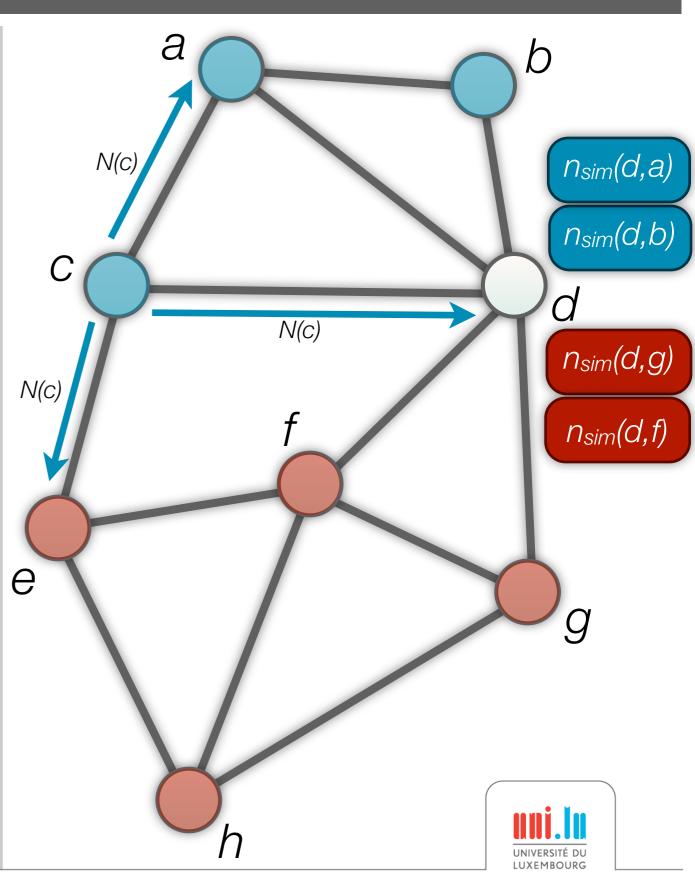
 inspired by the triadic closure^[1] property of social networks



- SHARC uses two-hop information
 - Nodes broadcast their labels and their list of neighbors
 - Used in the computation of a neighborhood similarity measure

 $\forall a \in V(\mathcal{N}), b \in N(a)$ $n_{sim}(a, b) = 1 - \frac{|(N(a) \setminus N(b)) \cup (N(b) \setminus N(a))|}{|N(a)| + |N(b)|}$

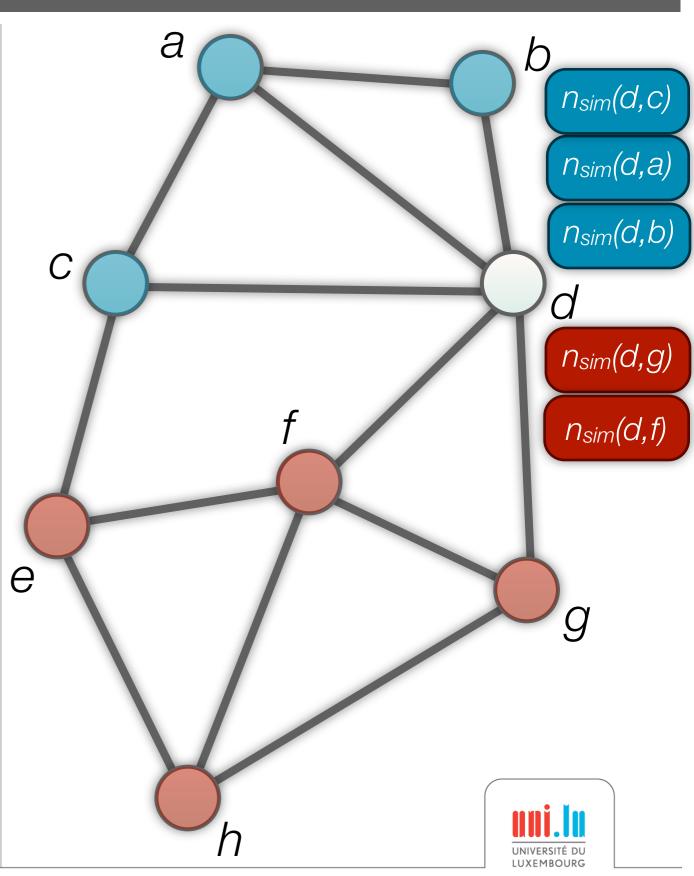
 inspired by the triadic closure^[1] property of social networks



- SHARC uses two-hop information
 - Nodes broadcast their labels and their list of neighbors
 - Used in the computation of a neighborhood similarity measure

 $\forall a \in V(\mathcal{N}), b \in N(a)$ $n_{sim}(a, b) = 1 - \frac{|(N(a) \setminus N(b)) \cup (N(b) \setminus N(a))|}{|N(a)| + |N(b)|}$

 inspired by the triadic closure^[1] property of social networks

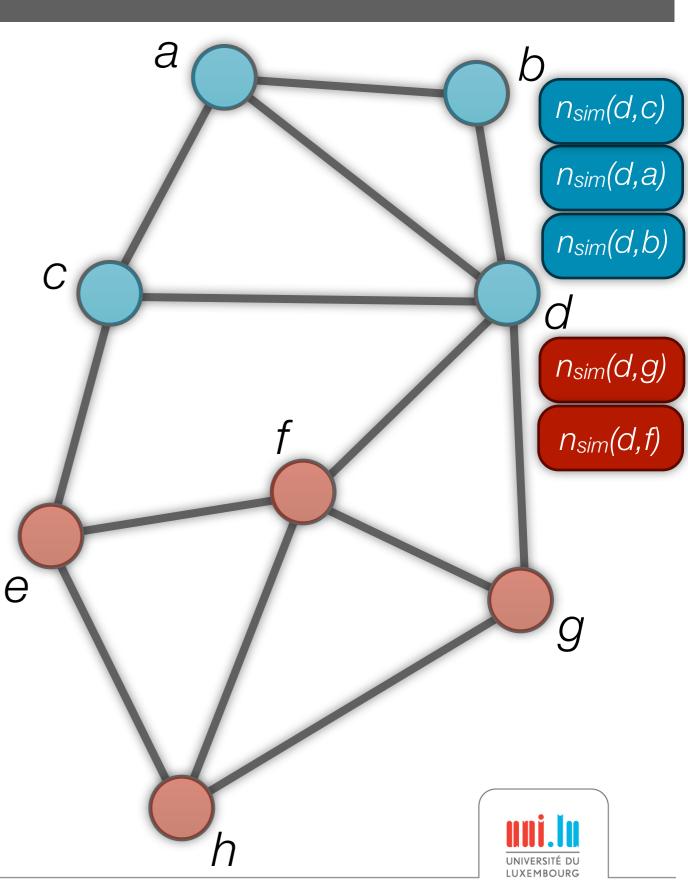


- SHARC uses two-hop information
 - Nodes broadcast their labels and their list of neighbors
 - Used in the computation of a neighborhood similarity measure

 $\begin{aligned} \forall a \in V(\mathcal{N}), b \in N(a) \\ n_{sim}(a, b) &= 1 - \frac{|(N(a) \setminus N(b)) \cup (N(b) \setminus N(a))|}{|N(a)| + |N(b)|} \end{aligned}$

inspired by the triadic closure^[1] property of social networks

$$C(a) = \underset{c \in \mathcal{C}}{\operatorname{arg\,max}} \sum_{\substack{b \in N(a)/\\C(b) = c}} n_{sim}(a, b)$$



- SHARC uses two-hop information
 - Nodes broadcast their labels and their list of neighbors
 - Used in the computation of a neighborhood similarity measure

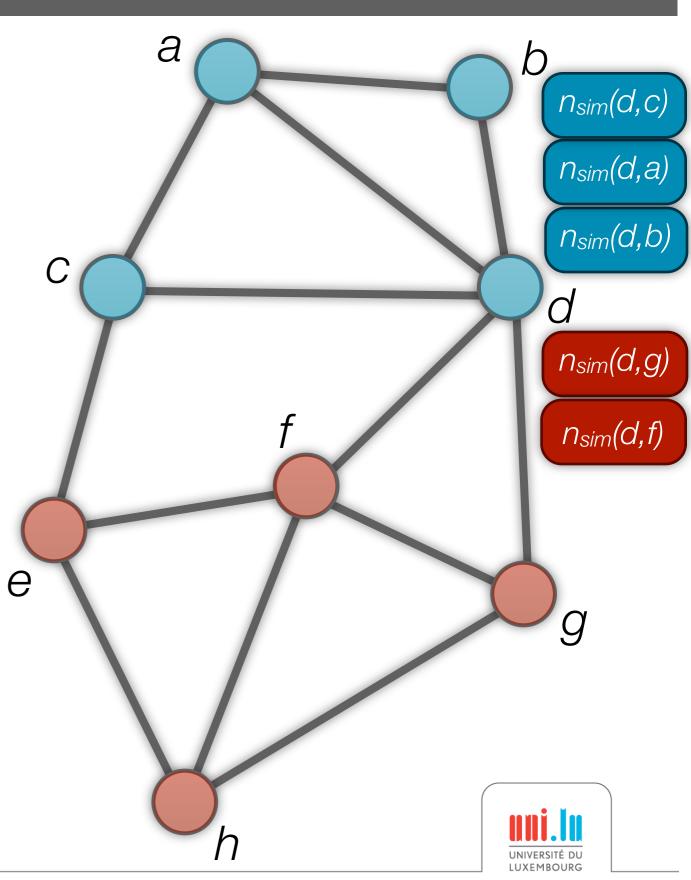
 $\forall a \in V(\mathcal{N}), b \in N(a)$ $n_{sim}(a, b) = 1 - \frac{|(N(a) \setminus N(b)) \cup (N(b) \setminus N(a))|}{|N(a)| + |N(b)|}$

 inspired by the triadic closure^[1] property of social networks

$$C(a) = \underset{c \in \mathcal{C}}{\operatorname{arg\,max}} \sum_{\substack{b \in N(a)/\\C(b) = c}} n_{sim}(a, b)$$

Objectives:

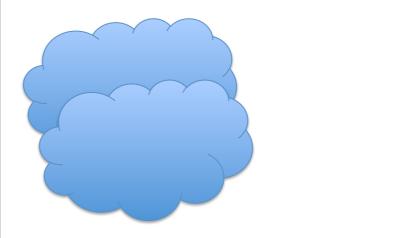
- Strengthen the community boundaries
- Be more deterministic



Focus on dynamic networks:

 Break mode: detects split of a community in two disconnected subset

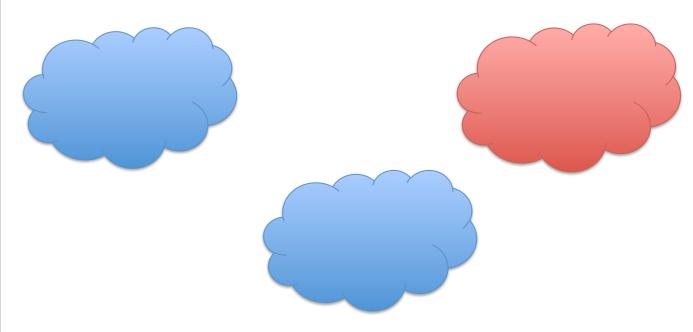
→ prevent the *wandering community* effect



Focus on dynamic networks:

 Break mode: detects split of a community in two disconnected subset

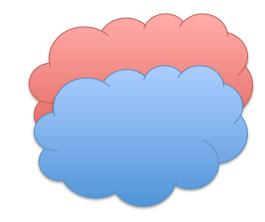
→ prevent the *wandering community* effect



Focus on dynamic networks:

 Break mode: detects split of a community in two disconnected subset

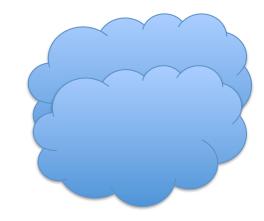
→ prevent the *wandering community* effect



Focus on dynamic networks:

 Break mode: detects split of a community in two disconnected subset

→ prevent the *wandering community* effect

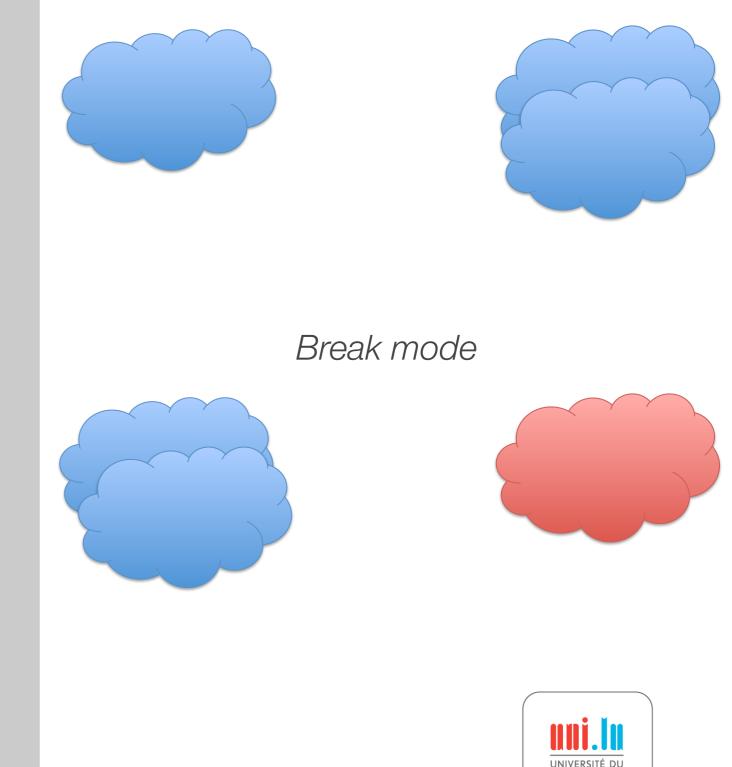


Focus on dynamic networks:

 Break mode: detects split of a community in two disconnected subset

→ prevent the *wandering community* effect

Wandering community effect

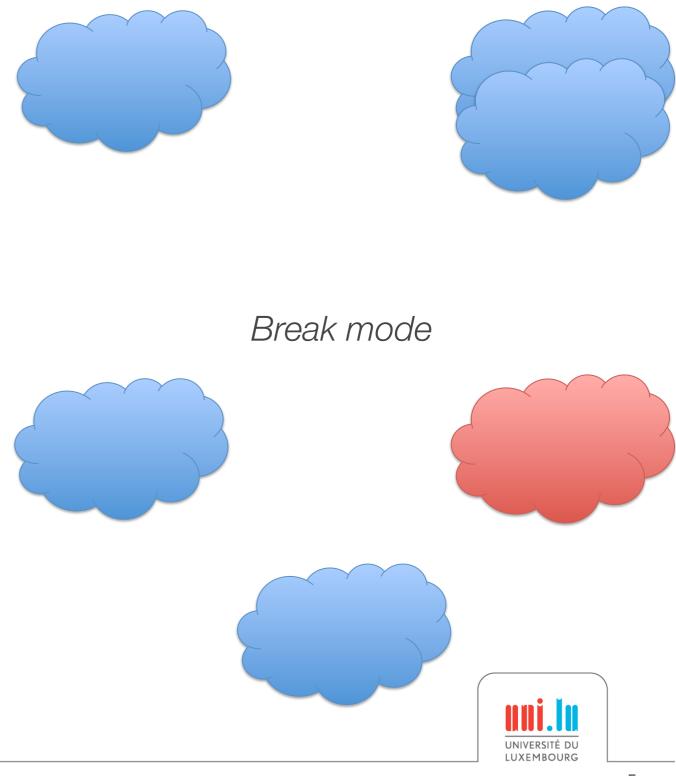


LUXEMBOURG

Focus on dynamic networks:

 Break mode: detects split of a community in two disconnected subset

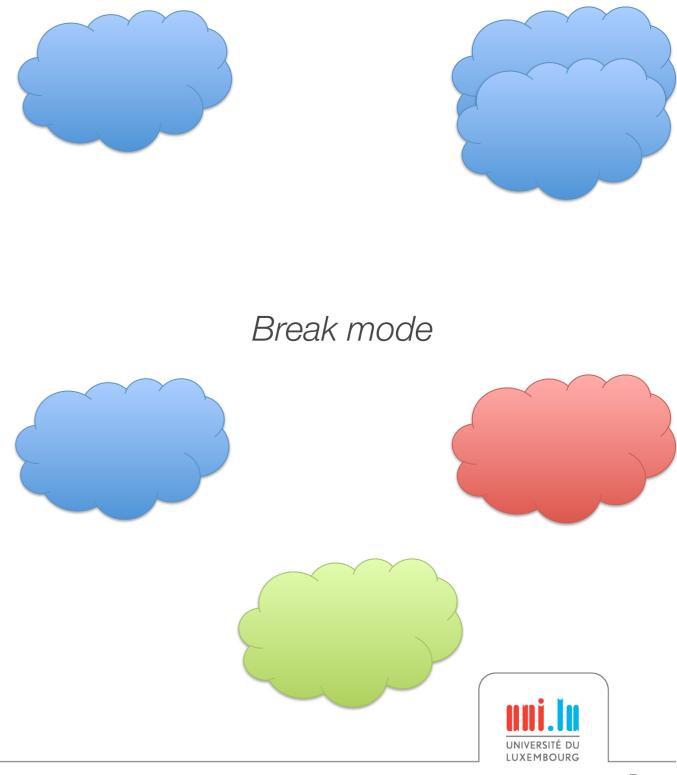
→ prevent the *wandering community* effect



Focus on dynamic networks:

 Break mode: detects split of a community in two disconnected subset

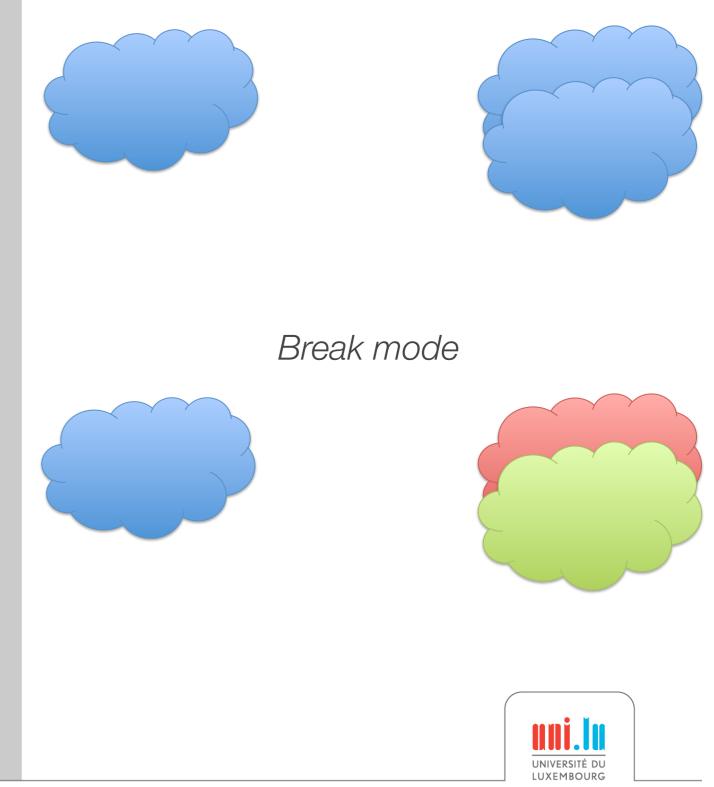
→ prevent the *wandering community* effect



Focus on dynamic networks:

 Break mode: detects split of a community in two disconnected subset

→ prevent the *wandering community* effect

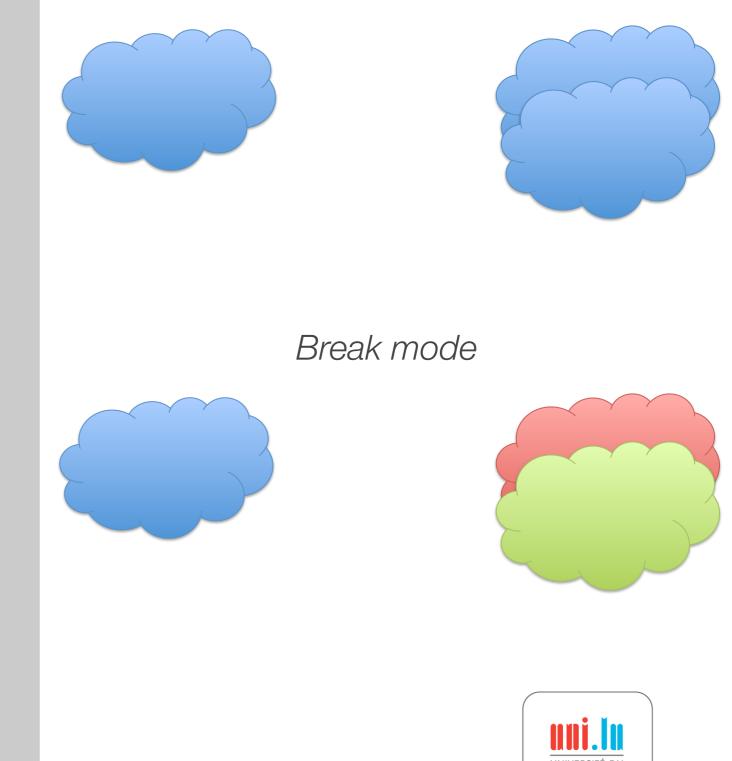


Focus on dynamic networks:

 Break mode: detects split of a community in two disconnected subset

→ prevent the *wandering community* effect

 Community size limitation: nodes farther away than *d* hops create a new community
 → can be helpful for delayconstrained applications (e.g. VANET safety)

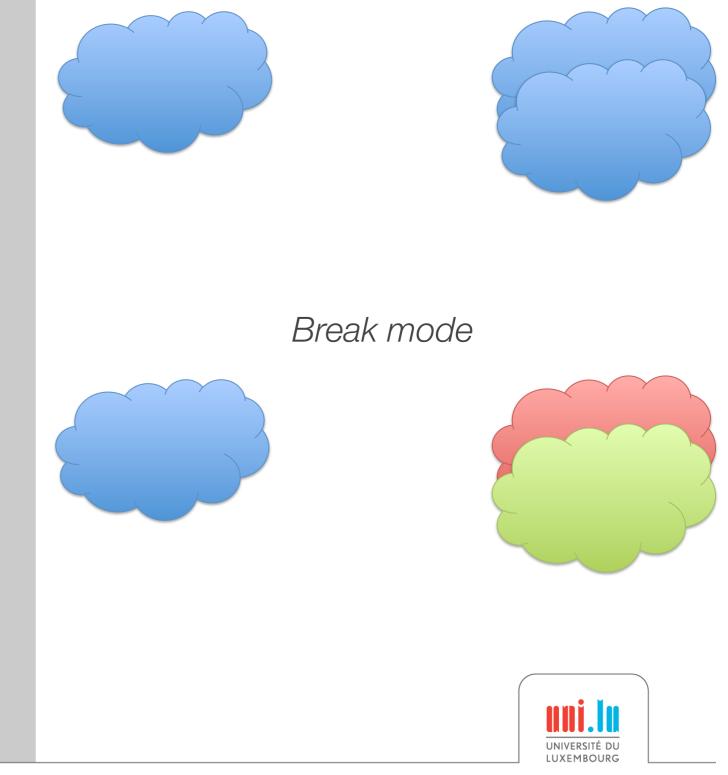


Focus on dynamic networks:

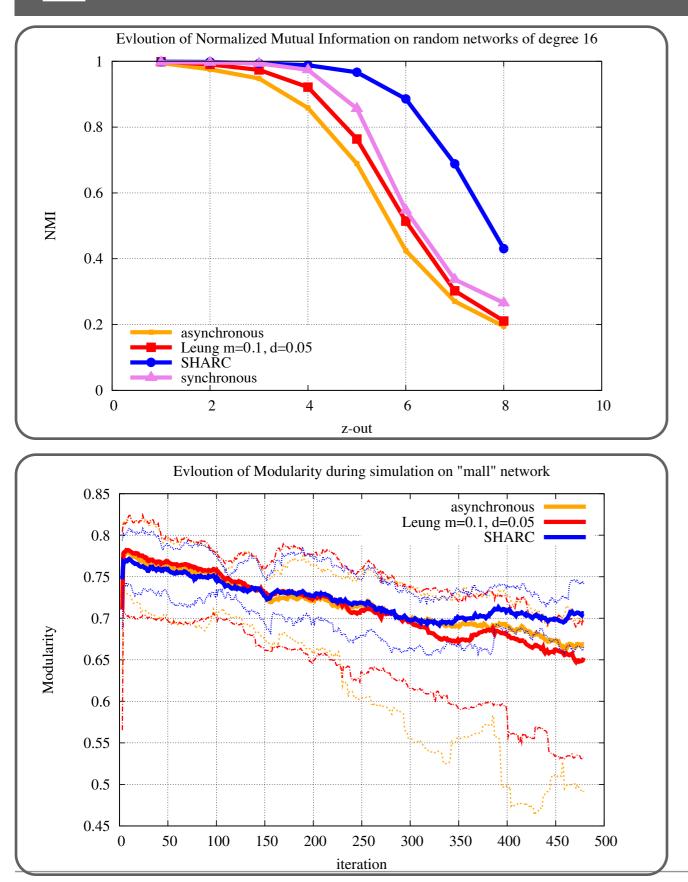
 Break mode: detects split of a community in two disconnected subset

→ prevent the *wandering community* effect

- Community size limitation: nodes farther away than *d* hops create a new community
 → can be helpful for delayconstrained applications (e.g. VANET safety)
- Shift from pure formal considerations to applicative constraints



SHARC performances



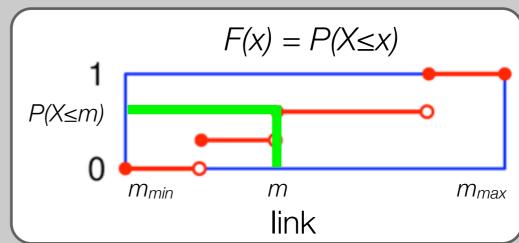
- Sharper assignment :
 - Higher modularity Q and NMI
 - Limits jumbo community effect by bounding community size
 - Important for highly dynamic networks
- More robust assignment :
 - Less standard deviation in results (topology, protocol seed)
- Results submitted as conference paper in Dec. 2009 (WoWMoM)
 - Acceptance pending

Consider link-stability as edge weight in community assignment process

- Normalized stability estimator (used to modulate the n_{sim} metric)
- Auto-adaptive to current network conditions
- Independent from underlying metric: age, average age, SNR (if X-layer), ...

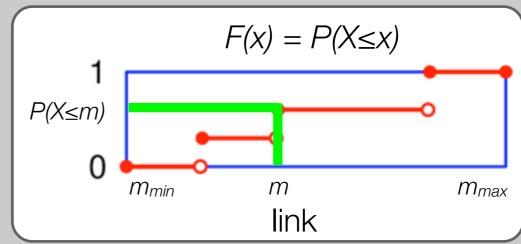
Consider link-stability as edge weight in community assignment process

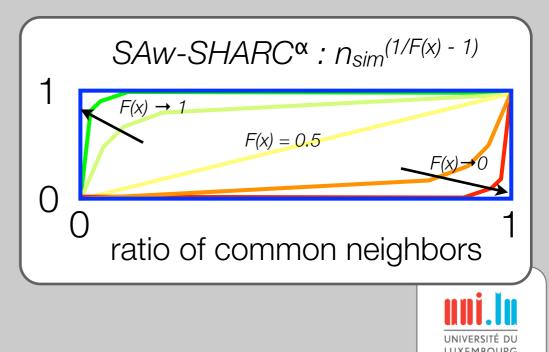
- Normalized stability estimator (used to modulate the n_{sim} metric)
- Auto-adaptive to current network conditions
- Independent from underlying metric: age, average age, SNR (if X-layer), ...
- Construct a CDF of link metrics amongst edges and use it as stability estimator
 - Gives the ratio of edges whose stability is equal or below the current edge value



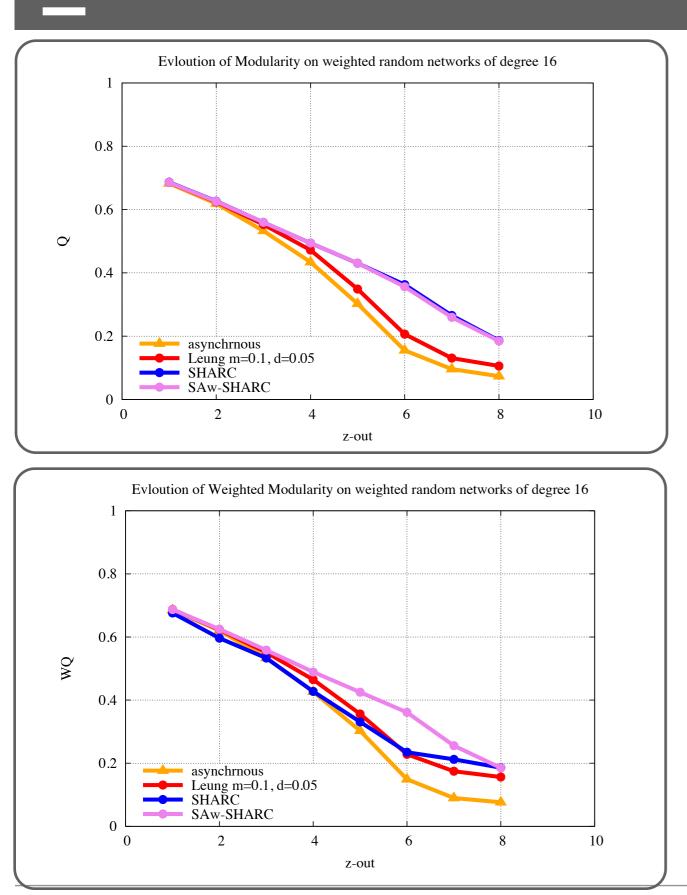
Consider link-stability as edge weight in community assignment process

- Normalized stability estimator (used to modulate the n_{sim} metric)
- Auto-adaptive to current network conditions
- Independent from underlying metric: age, average age, SNR (if X-layer), ...
- Construct a CDF of link metrics amongst edges and use it as stability estimator
 - Gives the ratio of edges whose stability is equal or below the current edge value
- CDF is used as modulation exponent of the neighborhood similarity measure
 - Neighbors with stable links contribute more to their community label score
 - Similar notions as in the α model of Watts and Strogatz for small-world



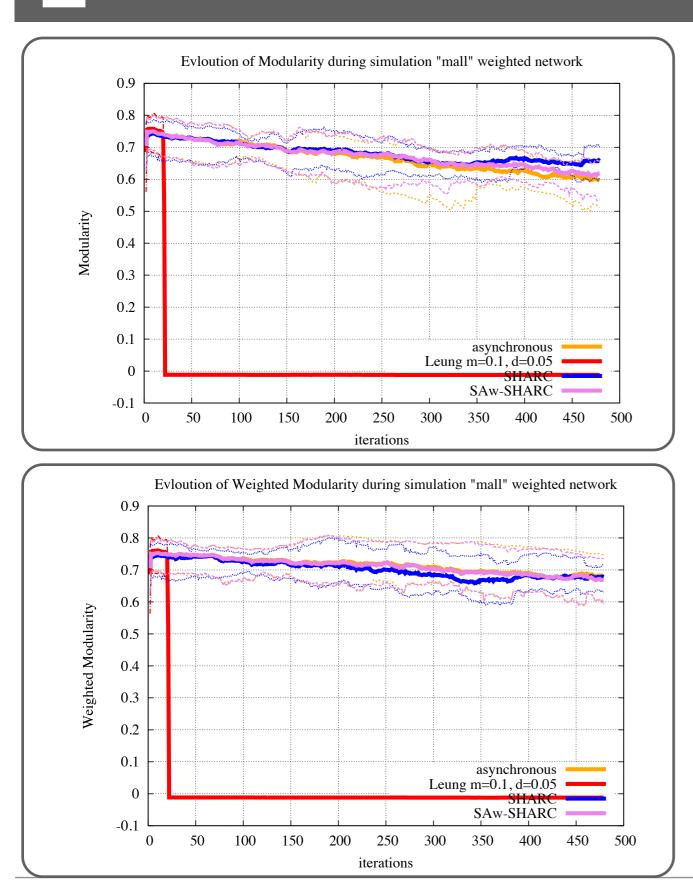


SAw-SHARC performances (static networks)



- Random networks with varying z-out and uniformly distributed edge weight
- SHARC and SAw-SHARC modularity Q are equivalent
- SAw-SHARC yields better results in terms of weighted modularity WQ
 - especially when compared with other weight-aware algorithms

SAw-SHARC performances (dynamic networks)



- "Mall" scenario with edge lifetime as quality metric
- SAw-SHARC performs good in terms of modularity Q and weighted modularity WQ
- Different trade-off between unweighted and weighted metrics
- Strange behavior for one of the algorithms on dynamic networks
- Need to investigate under more aggressive dynamic networks

- Use edge weight to represent shared content/interest between nodes
 - Application to MoSoNets (Mobile Social Networks)
 - Need a function to express the interest as a scalar (Locality Sensitive Hashing ?)
 - Maybe a mixed approach stability+interest in a multi-objective problem
- Introduce long-term interaction metrics to the assignment process
 - Favor people with regular interaction pattern to be grouped in the same community
- Use of community structures to help algorithms with scalability
 - Experiments on the tree/community structures matching
 - Scalability in k(connected)-m(dominant)-CDS creation
- Use of community structures for reputation and trust
 - Can we derive (partially ?) node reputation from its community reputation ?
 - Rough idea, further investigation needed

Contact information

Guillaume-Jean Herbiet
 <<u>guillaume.herbiet@uni.lu</u>>
 Office E008
 Campus Kirchberg
 f, rue Coudenhove-Kalergi
 L-1359 Luxembourg

<u>http://herbiet.gforge.uni.lu</u>

Thanks for your attention

Considering a network
$$\mathcal{N}=(E,V)$$

Considering a network $\mathcal{N} = (E, V)$ We define the adjacency matrix A $a_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are adjacent} \\ 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$

Considering a network $\mathcal{N} = (E, V)$ We define the adjacency matrix \mathbf{A} $a_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are adjacent} \\ 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$

- Considering a network $\mathcal{N} = (E, V)$ We define the adjacency matrix \mathbf{A} $a_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are adjacent} \\ 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$
- We define the strength matrix \mathbf{S} where s_{ik} is the strength with which node belongs to community

- Considering a network $\mathcal{N} = (E, V)$ We define the adjacency matrix \mathbf{A} $a_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are adjacent} \\ 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$
- We define the strength matrix \mathbf{S} where s_{ik} is the strength with which node belongs to community
- We define the assignment matrix $\mathbf{C} c_{ik} = \begin{cases} 1 & \text{if } i \text{ is in community } k \\ 0 & \text{otherwise} \end{cases}$

- Considering a network $\mathcal{N} = (E, V)$ We define the adjacency matrix \mathbf{A} $a_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are adjacent} \\ 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$
- We define the strength matrix \mathbf{S} where s_{ik} is the strength with which node belongs to community
- We define the assignment matrix $\mathbf{C} c_{ik} = \begin{cases} 1 & \text{if } i \text{ is in community } k \\ 0 & \text{otherwise} \end{cases}$

• Then
$$\forall i \in V, \forall k \in \mathcal{C}$$

$$s_{ik} = \sum_{j \in V} a_{ij} c_{jk} \left(1 - \frac{\sum_{p \in V} a_{ip} (1 - a_{jp}) + \sum_{q \in V} a_{jq} (1 - a_{iq})}{\sum_{n \in V} a_{in} + \sum_{m \in V} a_{jm}} \right)$$

- Considering a network $\mathcal{N} = (E, V)$ We define the adjacency matrix A $a_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are adjacent} \\ 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$
- We define the strength matrix \mathbf{S} where s_{ik} is the strength with which node belongs to community
- We define the assignment matrix $\mathbf{C} c_{ik} = \begin{cases} 1 & \text{if } i \text{ is in community } k \\ 0 & \text{otherwise} \end{cases}$

Then
$$\forall i \in V, \forall k \in \mathcal{C}$$

$$s_{ik} = \sum_{j \in V} a_{ij} c_{jk} \left(1 - \frac{\sum_{p \in V} a_{ip}(1 - a_{jp}) + \sum_{q \in V} a_{jq}(1 - a_{iq})}{\sum_{n \in V} a_{in} + \sum_{m \in V} a_{jm}} \right)$$

- Considering a network $\mathcal{N} = (E, V)$ We define the adjacency matrix A $a_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are adjacent} \\ 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$
- We define the strength matrix \mathbf{S} where s_{ik} is the strength with which node belongs to community
- We define the **assignment matrix C** $c_{ik} = \begin{cases} 1 & \text{if } i \text{ is in community } k \\ 0 & \text{otherwise} \end{cases}$

• Then
$$\forall i \in V, \forall k \in \mathcal{C}$$

$$s_{ik} = \sum_{j \in V} a_{ij}c_{jk} \left(1 - \frac{\sum_{p \in V} a_{ip}(1 - a_{jp}) + \sum_{q \in V} a_{jq}(1 - a_{iq})}{\sum_{n \in V} a_{in} + \sum_{m \in V} a_{jm}} \right)$$
• And

$$c_{ik} = \begin{cases} 1 & \text{if } s_{ik} = max_{c \in \mathcal{C}}(s_{ic}) \\ 0 & \text{otherwise} \end{cases}$$

UNIVERSITÉ DU

- Mathematically, the community assignment problem sums up to computing the assignment matrix C at each iteration step
- Problem is neither quadratic nor linear
- Proof of convergence is hard
- Need to investigate for mathematical programming model

