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Rationale for this approach

■ In wireless mobile ad hoc networks 
network heterogeneity exists
■ Propagation/environment
■ Human (i.e. social) mobility 

patterns
■ Mutual or group shared interest

■Community structures are helpful
■ Subgraphs of interactive and 

high-end communications
■ Use weak ties for delay-tolerant 

global information

■Challenges:
■ Dynamic network
■ Distributed approach
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Principle and limitation of distributed algorithms

■ Alternative algorithms[1][2] use 
epidemic label propagation
■ Nodes broadcast their labels to 

their neighbors
■ Received labels are counted
■ Node changes to the label with 

highest count
■Operation is (a)synchronous

■ Known issues:
■ Label oscillation (synchronous)
■ Community domination
■ Parameter dependent

■Not really focusing on dynamic 
networks
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■ SHARC uses two-hop information
■ Nodes broadcast their labels and 

their list of neighbors
■ Used in the computation of a 

neighborhood similarity measure

■ inspired by the triadic closure[1] 
property of social networks

■Objectives:
■ Strengthen the community 

boundaries
■ Be more deterministic
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■ Focus on dynamic networks:
■ Break mode: detects split of a 

community in two disconnected 
subset
→ prevent the wandering 
community effect

■Community size limitation: nodes 
farther away than d hops create a 
new community
→ can be helpful for delay-
constrained applications
(e.g. VANET safety)

■ Shift from pure formal 
considerations to applicative 
constraints

5

Wandering community effect

Break mode



SHARC performances

■ Sharper assignment :

■ Higher modularity Q and NMI

■ Limits jumbo community effect 
by bounding community size

■ Important for highly dynamic 
networks

■More robust assignment :

■ Less standard deviation in 
results (topology, protocol seed)

■ Results submitted as conference 
paper in Dec. 2009 (WoWMoM)

■ Acceptance pending
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SAw-SHARC: Stability Aware SHARC

■Consider link-stability as edge weight in community assignment process
■ Normalized stability estimator (used to modulate the nsim metric)
■ Auto-adaptive to current network conditions
■ Independent from underlying metric: age, average age, SNR (if X-layer), ...

■Construct a CDF of link metrics amongst
edges and use it as stability estimator
■ Gives the ratio of edges whose stability

is equal or below the current edge value

■CDF is used as modulation exponent of
the neighborhood similarity measure
■ Neighbors with stable links contribute

more to their community label score
■ Similar notions as in the α model of

Watts and Strogatz for small-world

7

link 
mmaxmmin

F(x) = P(X≤x)

m

P(X≤m)

ratio of common neighbors

SAw-SHARCα : nsim(1/F(x) - 1)

1

0
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F(x) = 0.5
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SAw-SHARC performances (static networks)

■ Random networks with varying 
z-out and uniformly distributed 
edge weight

■ SHARC and SAw-SHARC 
modularity Q are equivalent

■ SAw-SHARC yields better results in 
terms of weighted modularity WQ

■ especially when compared with 
other weight-aware algorithms
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SAw-SHARC performances (dynamic networks)

■ “Mall” scenario with edge lifetime 
as quality metric

■ SAw-SHARC performs good in 
terms of modularity Q and weighted 
modularity WQ

■Different trade-off between 
unweighted and weighted metrics

■ Strange behavior for one of the 
algorithms on dynamic networks

■Need to investigate under more 
aggressive dynamic networks
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Perspectives / Future work

■Use edge weight to represent shared content/interest between nodes
■ Application to MoSoNets (Mobile Social Networks)
■ Need a function to express the interest as a scalar (Locality Sensitive Hashing ?)

■ Maybe a mixed approach stability+interest in a multi-objective problem

■ Introduce long-term interaction metrics to the assignment process
■ Favor people with regular interaction pattern to be grouped in the same 

community

■Use of community structures to help algorithms with scalability
■ Experiments on the tree/community structures matching
■ Scalability in k(connected)-m(dominant)-CDS creation

■Use of community structures for reputation and trust
■ Can we derive (partially ?) node reputation from its community reputation ?
■ Rough idea, further investigation needed

10



Contact information

■ Guillaume-Jean Herbiet
<guillaume.herbiet@uni.lu>
Office E008
Campus Kirchberg
6, rue Coudenhove-Kalergi
L-1359 Luxembourg

■ http://herbiet.gforge.uni.lu
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■Considering a network

■We define the adjacency matrix

■We define the set of communities

■We define the strength matrix     where       is the strength with which node  
belongs to community

■We define the assignment matrix 

■ Then 

■ And
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0 otherwise

∀i ∈ V,∀k ∈ C
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�
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SHARC Mathematical Model (2/2)

■Mathematically, the community assignment problem sums up to computing the 
assignment matrix     at each iteration step

■ Problem is neither quadratic nor linear

■ Proof of convergence is hard

■Need to investigate for mathematical programming model
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