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m Community structures are helpful

= Subgraphs of interactive and
high-end communications

= Use weak ties for delay-tolerant
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m Alternative algorithmsl'l2l yse
epidemic label propagation
= Nodes broadcast their labels to
their neighbors
= Received labels are counted
= Node changes to the label with
highest count
m Operation is (a)synchronous

m Known ISSuUes:
= |_abel oscillation (synchronous)
= Community domination
= Parameter dependent

m Not really focusing on dynamic
networks
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SHARC: Sharper Heuristic for Assignment of Robust Communities

m SHARC uses two-hop information
= Nodes broadcast their labels and
their list of neighbors
= Used in the computation of a
neighborhood similarity measure

Va € V(N),b € N(a)
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c€C beN(a)/
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\_
m Objectives:

= Strengthen the community
boundaries

= Be more deterministic :
[IMarc S. Granovetter. The Strength of weak ties. h l"". I “
American Journal of Sociology, Vol. 78 Num.6 p.1360 ¢+ | UNVER SITE DU
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Additional SHARC improvements

Wandering community effect

m Focus on dynamic networks:

= Break mode: detects split of a
community in two disconnected
subset
— prevent the wandering
community effect
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m Focus on dynamic networks:

= Break mode: detects split of a
community in two disconnected
subset
— prevent the wandering
community effect

Break mode
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Additional SHARC improvements

m Focus on dynamic networks:

= Break mode: detects split of a
community in two disconnected
subset
— prevent the wandering
community effect

m Community size limitation: nodes
farther away than d hops create a
new community
— can be helpful for delay-
constrained applications
(e.g. VANET safety)

Wandering community effect

Break mode

o
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Additional SHARC improvements

Wandering community effect

m Focus on dynamic networks:

= Break mode: detects split of a
community in two disconnected
subset
— prevent the wandering
community effect

m Community size limitation: nodes
farther away than d hops create a Break mode
new community
— can be helpful for delay-
constrained applications
(e.g. VANET safety)

o

m Shift from pure formal
considerations to applicative

constraints
( .
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SHARC performances

4 Evloution of Normalized Mutual Information on random networks of degree 16
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\ iteration Y,

J

m Sharper assignment :
= Higher modularity Q and NMI

= | imits jumbo community effect
by bounding community size

= [mportant for highly dynamic
networks

m More robust assignment :

m | ess standard deviation in
results (topology, protocol seed)

m Results submitted as conference
paper in Dec. 2009 (WoWMoM)

. I
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= Acceptance pending
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SAw-SHARC: Stability Aware SHARC
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SAw-SHARC: Stability Aware SHARC

m Consider link-stability as edge weight in community assignment process
= Normalized stability estimator (used to modulate the nsin metric)
= Auto-adaptive to current network conditions
= [Independent from underlying metric: age, average age, SNR (if X-layer), ...
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SAw-SHARC: Stability Aware SHARC

m Consider link-stability as edge weight in community assignment process
= Normalized stability estimator (used to modulate the nsin metric)
= Auto-adaptive to current network conditions
= [Independent from underlying metric: age, average age, SNR (if X-layer), ...

m Construct a CDF of link metrics amongst Fx) = PX<x)

edges and use it as stability estimator

1 L
P(X<m) O
= Gives the ratio of edges whose stability 0 I : I I

Is equal or below the current edge value Mimin m Mimax

. I
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SAw-SHARC: Stability Aware SHARC

m Consider link-stability as edge weight in community assignment process
= Normalized stability estimator (used to modulate the nsin metric)
= Auto-adaptive to current network conditions
= [Independent from underlying metric: age, average age, SNR (if X-layer), ...

-
m Construct a CDF of link metrics amongst 1 P = PX<X) .
edges and use it as stability estimator Pixem) o
= Gives the ratio of edges whose stability 0 j
Is equal or below the current edge value Mimin m Mimax
g link y
m CDF is used as modulation exponent of [ SAW-SHARC®  naim(1/FX - 1) h
the neighborhood similarity measure 1 =
= Neighbors with stable links contribute ’ Fi) = 0.5
more to their community label score . d (X)*
= Similar notions as in the o« model of 0 1
ratio of common neighbors

Watts and Strogatz for small-world - )
(A

UUUUUUUUUUUU
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SAw-SHARC performances (static networks)

Evloution of Modularity on weighted random networks of degree 16

02 |

m=@== | ecung m=0.1, d=0.05
==@== SHARC
SAw-SHARC

asynchrnous

(

| |
2 4 6 8

Z-out

10

J

Evloution of Weighted Modularity on weighted random networks of degree 16

~N

wQ

0

06 F

02 F

asynchrnous

m=@== | cung m=0.1, d=0.05
==@== SHARC
SAw-SHARC

0

-

| |
2 4 6 8

z-out

[H FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION

m Random networks with varying
z-out and uniformly distributed
edge weight

m SHARC and SAw-SHARC
modularity Q are equivalent

m SAw-SHARC vyields better results in
terms of weighted modularity WQ

» especially when compared with
other weight-aware algorithms

. I
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UNIVERSITE DU
LUXEMBOURG
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SAw-SHARC performances (dynamic networks)

Evloution of Modularity during simulation "mall" weighted network
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m “Mall” scenario with edge lifetime
as quality metric

m SAwW-SHARC performs good in
terms of modularity Q and weighted
modularity WQ

m Different trade-off between
unweighted and weighted metrics

m Strange behavior for one of the
algorithms on dynamic networks

m Need to investigate under more
aggressive dynamic networks

. I
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Perspectives / Future work

m Use edge weight to represent shared content/interest between nodes
= Application to MoSoNets (Mobile Social Networks)
= Need a function to express the interest as a scalar (Locality Sensitive Hashing ?)
= Maybe a mixed approach stability+interest in a multi-objective problem

m Introduce long-term interaction metrics to the assignment process
= Favor people with regular interaction pattern to be grouped in the same
community

m Use of community structures to help algorithms with scalability
= Experiments on the tree/community structures matching
= Scalability in k(connected)-m(dominant)-CDS creation

m Use of community structures for reputation and trust
= Can we derive (partially ?) node reputation from its community reputation ?

= Rough idea, further investigation needed
( i
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Contact information

= Guillaume-Jean Herbiet
<guillaume.herbiet@uni.lu>

Office EO08

Campus Kirchberg

6, rue Coudenhove-Kalergi
L-1359 Luxembourg

= http://herbiet.gforge.uni.lu

Thanks for your attention
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SHARC Mathematical Model (1/2)

= Considering a network N = (E, V') 1 if 4 and § are adjacent
= We define the adjacency matrix A a;; = ¢ 1 if { =
0 otherwise
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SHARC Mathematical Model (1/2)

m Considering a network N — (E, V)

1 if 2 and 7 are adjacent
= We define the adjacency matrix A a;; =< 1  ifi=
0 otherwise

m We define the set of communities C C V

m \\e define the strength matrix S where S;k 1s the strength with which node
belongs to community

1 if 7 1S in community k

m We define the assignment matrix C ¢;, = { 0 otherwise
Ir'wl
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SHARC Mathematical Model (1/2)

m Considering a network N = (E ; V) 1 if 4 and j are adjacent
= We define the adjacency matrix A a;; = ¢ 1 if { =
0 otherwise

m We define the set of communities C C V

m \\e define the strength matrix S where S;k 1s the strength with which node
belongs to community
1 if 7 1S in community k

m We define the assignment matrix C ¢;, = { 0 otherwise
Ir'wl

nThen Ve € V. Vk € C
ZpEV aip(l — ajp) + quv ajq(1 — aiq)
S;k — Z CLz‘jCjk 1
ZnEV Ain + ZmEV Udjm

jev
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SHARC Mathematical Model (1/2)

m Considering a network N = (E7 V) 1 if 2 and 7 are adjacent

= We define the adjacency matrix A a;; = ¢ 1 if { =

= We define the set of communities C C V 0 otherwise

m \\e define the strength matrix S where S;k 1s the strength with which node
belongs to community
1 if 7 1S in community k

m We define the assignment matrix C ¢;, = { 0 otherwise
Ir'wl

nThen Ve € V. Vk € C
aip(l —a;p) + a;o(1—ai,)
8 = Z QiiCi ((1 ZpEV p( Jp) qu\/ JQ( C])>

JEV ZnEV Ain, T ZmEV djm
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SHARC Mathematical Model (1/2)

= Considering a network N = (E, V') 1 if 4 and § are adjacent
= We define the adjacency matrix A a;; = ¢ 1 if { =
0 otherwise

m We define the set of communities C C V

m \\e define the strength matrix S where S;k 1s the strength with which node
belongs to community
1 if 7 1S in community k

m We define the assignment matrix C ¢;, = { 0 otherwise
Ir'wl

nThen Ve € V. Vk € C
5 — Z aiiCik (E ZpEV aip(l _ ajp) + quv ajq(l _ aiq?)
jev ZnEV Qin + ZmEV djm
m And 2
Cilk. = X

_/

1 1f Sil = mCLZIZ'c€C(S7Jc)

0 otherwise :
\ .l
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SHARC Mathematical Model (2/2)

m Mathematically, the community assignment problem sums up to computing the
assignment matrix C at each iteration step

m Problem is neither quadratic nor linear
m Proof of convergence is hard

m Need to investigate for mathematical programming model

. I
UNIVERSITE DU
LLLLLL OURG

[H FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION 13



