UrbiSim:

A Framework for Simulation of Ad Hoc Networks in Realistic Urban Environment

UBIROADS'09 Workshop - June, 26th 2009

Guillaume-Jean Herbiet <guillaume.herbiet@uni.lu>

Pascal Bouvry <pascal.bouvry@uni.lu>

Outline

- Context and rationale
- UrbiSim principles and architecture
- Main features
- Future work
- Conclusion

Models for MANET simulation

- Model parameters impacting the network characteristics and performances
- Environmental factors:
 - Propagation model (fading, shadowing, ...)
 - Mobility constraints (pathways, speed limits, physical constraints)
- User-dependent factors:
 - Users destinations and path followed
 - Interaction between users (traffic pattern)

Why this contribution?

- Development of handheld and vehicular communicating devices
 - Network of urban users with characteristic behavior (heterogenous mobility)
 - New interactions as ground for new communication protocols
- Requires a novel approach to mobility modeling/simulation
 - Reproduce the constraints of urban environment
 - See the users behind the equipments
 - Be easily extendable

Overview of current models

- Simple but unrealistic synthetic models [Camp02]
 - e.g. Random Waypoint [Yoon03]
- More realistic models take into account
 - laws of physic (in speed/direction change [Bettstetter01])
 - the environment (constrain movement to streets, presence of buildings [Jardosh03])
 - social behavior [Herrmann03] of user (habits, interests)
- Trace-based models [Koberstein08]

None of them proposes a complete approach

A generic framework for ad hoc simulation in urban environments

- A generic framework for ad hoc simulation in urban environments
- Extends existing simulators as independent plugin
 - does not rely on any specific command/library
 - work with many C/C++ based network simulators (NS-2, OPNET, OMNeT++)

- A generic framework for ad hoc simulation in urban environments
- Extends existing simulators as independent plugin
 - does not rely on any specific command/library
 - work with many C/C++ based network simulators
 (NS-2, OPNET, OMNeT++)
- Open source (available on UNI.LU Gforge)

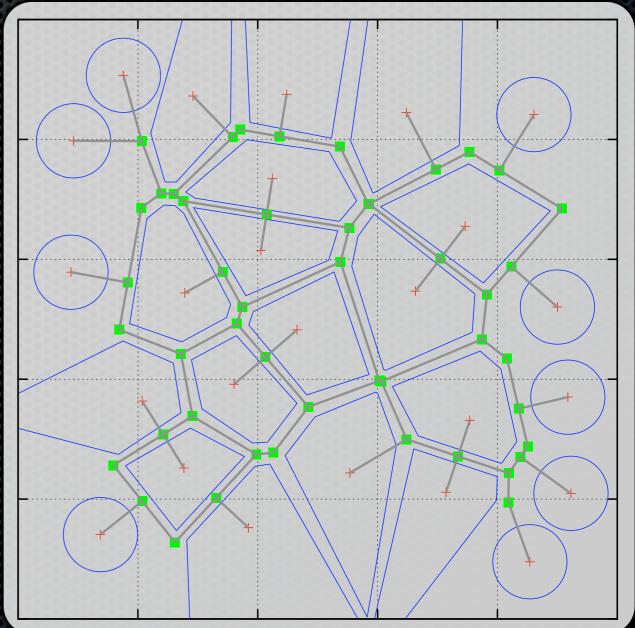


- A generic framework for ad hoc simulation in urban environments
- Extends existing simulators as independent plugin
 - does not rely on any specific command/library
 - work with many C/C++ based network simulators
 (NS-2, OPNET, OMNeT++)
- Open source (available on UNI.LU Gforge)
- Under development
 - not ready for extensive simulation campaigns so far

UrbiSim architecture

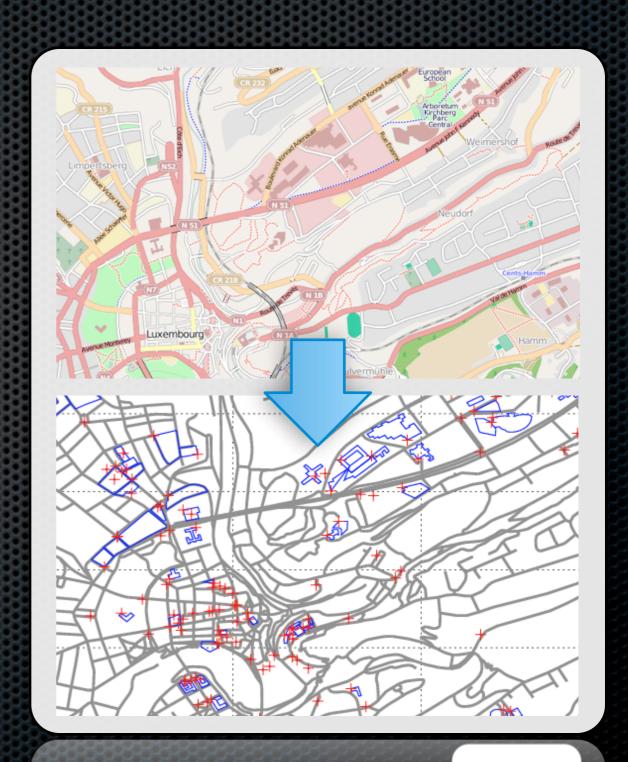
- high-API: interface with
 - Environment models (road types, spots, etc.)
 - Large scale mobility (nodes behavioral profile)
 - Small scale mobility (nodes physical model)
- low-API: interface with
 - Simulators node models (updates position of nodes in simulators)
 - Simulators "controllers" (updates radio links between nodes in simulators)

- Framework core:
 - manages all components


UrbiSim principles

- Users move from building (spot) to building using streets or pathways:
 - User "profile" decides of buildings to visit and entry time
 - Can be based on real world traces
 - Controlled randomness (simulation reproducibility)
- Pathways form a weighted directed graph with streets as edges:
 - Weight is time to traverse a street
 - Shortest path between building is chosen (BGL)
- Users move inside spot, wait and aim for next destination

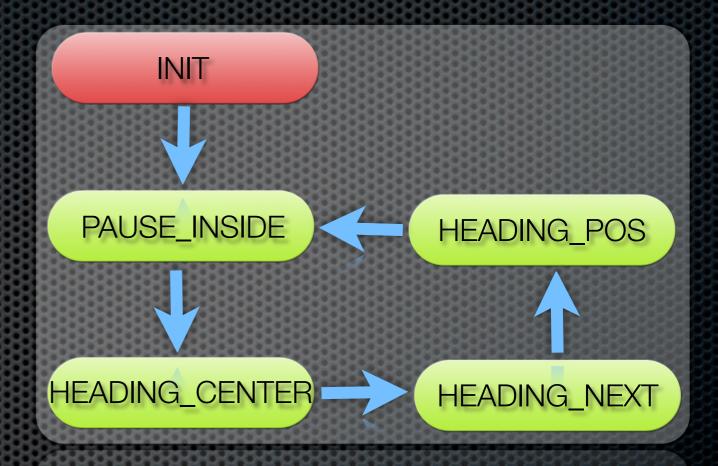
Urban environment generation


- Radom placement of building "centers"
- Generation of streets using Voronoi graph (perpendicular bisectors)
- Buildings fill space between streets with a margin (streets width)
- Buildings can also be round
- Access to "center" from the closest point of the closest street
- Outputs XML config file (compliant with defined DTD) + graphical output

Real-world urban environment

- Translation from OpenStreetMap
 XML to UrbiSim XML
- Import pathways from streets with specificities (max speed, unidirectional, etc.)
- Import spots from POI with type and shape
- Generation of additional spots (for users home, companies, etc.)
- Extension to usage of city amenities: parkings, bicyle rental stations, bus stops, etc.

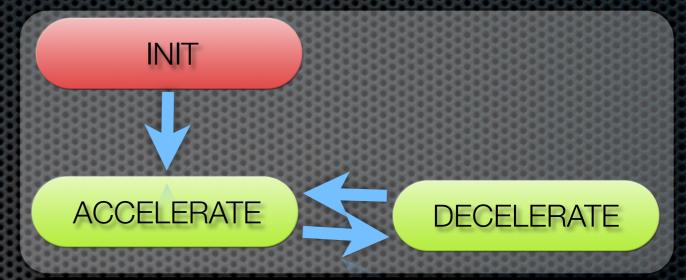
Social behavioral model for nodes

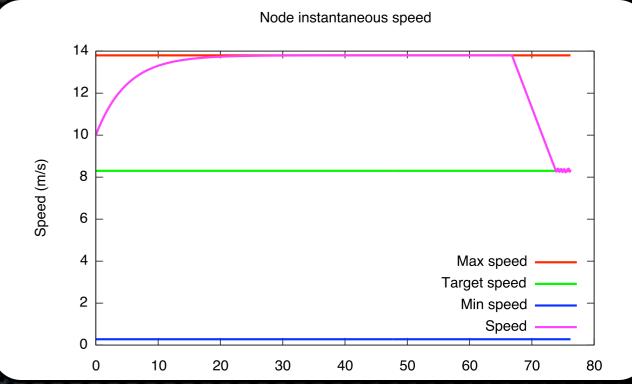

- Create a node profile (XML sub-tree) that will determine the list of visited buildings and the time of visit
 - Due to membership of certain groups
 - Individual preferences
- Mimmic users going to work, home, shopping, visit, ...
- Mimmic users going from building to building for classes, meetings, ...

Heterogenous mobility with long-term interactions

Global (large-scale) mobility

- Governed by a FSM
- Different mobility for in/out buildings
- On streets:
 - Speed on streets depends on traffic congestion
 - Pause time at intersections
 - Speed decay depending on turning angle




- In buildings:
 - Random walk at walking speed to random position inside building
 - Pause time depends on profile

Atomic (small-scale) mobility

- FSM to manage node speed whatever the global state
- Node accelerates to reach the street max speed
- Node breaks to reach the end-street intersection/turning speed
- Realistic physical speed models:
 - eg. exponential acceleration/linear braking
 - user are attached a small-scale model based on their vehicle type

Future work: Multimodal transportation

- Personal multimodal transportation:
 - Switch between car/bicycle/walk based on distance, fastest alternative, urban constraints (pedestrian zones)
 - Refine the path computation algorithm and use more information from OpenStreetMap database
- Public multimodal transportation:
 - Introduce buses, trains with dedicated or shared pathways
 - Refine the path computation algorithm and use more information from OpenStreetMap database
 - Introduce new "collective mobiles" with specific mobility pattern and "waiting points" (bus stops, stations, etc.)

Future work: Environment-aware propagation model

- So far, propagation model is simple free-space
 - Another important but different aspect of the model
- Add a log-normal shadowing component [Hekmat06]
 - Go beyond the circular transmission radius
- Include buildings in propagation model
 - Different attenuation to model density/material
 - Propagation matrix depending on node situation (in, out)

Need to investigate impact factor on topology

Conclusion

- Realistic modeling of node mobility in urban environment
- Social-aware behavior of the users
- Implementation as natural plugin for main network simulators
- Allows to study heterogenous mobility environments with long-term interactions

Thanks for your attention.

